Memory architecture
MEMORY ARCHITECTURE describes the methods used to implement electronic computer data storage in a manner that is a combination of the fastest, most reliable, most durable, and least expensive way to store and retrieve information.

Depending on the specific application, a compromise of one of these requirements may be necessary in order to improve another requirement.

For example: dynamic memoryis commonly used forprimary data storage due to its fast access speed. However dynamic memory must be repeatedlyrefreshed with a surge of current millions of time per second, or the stored data will decay and be lost.

Flash memory allows for long-term storage over a period of years, but it is much slower than dynamic memory, and the static memory storage cells wear out with frequent use.

Similarly, thedata bus is often designed to suit specific needs such as serial or parallel data access, and the memory may be designed to provide forparity error detection or evenerror correctionin expensive business systems.

The x86 architecture is relatively uncommon in embedded systems however, and low-cost microprocessor markets such as home appliances and toys lack any significant x86 presence.Simpler 16-bit x86 chips are more common here, but AMD's Geode and the new Intel Atom are examples of 32- and 64-bit designs used in this segment.

Contrary to some popular belief, x86 is not synonymous with IBM PC compatibility as this implies a multitude of other hardware, although some of this is standardized. For instance, the original Xbox was designed around an x86 processor, but DRM restrictions led to software requirements that made it incapable of running code that was standard on IBM PC compatible systems. Also, the GRID Compass laptop (one of the first on the market), and many others, used x86 chips before the IBM PC compatible market even started.
X86 MEMORY SEGMENTATION
X 86 memory segmentationrefers to the implementation of memory segmentation on the x86 architecture. Memory is divided into portions that may be addressed by a single index register without changing a 16-bitsegment selector. In real mode or V86 mode, a segment is always 64 kilobytes in size (using 16-bit offsets). In protected mode, a segment can have variable length.
REAL MODE
In 16-bit real mode, enabling applications to make use of multiple memory segments was quite complex, but was viewed as a necessary evil for all but the smallest tools .

In real mode, the 16-bit segment selector was interpreted as the most significant 16 bits of a linear 20-bit address, with the remaining four bits being all zeros. The segment selector is always added with a 16-bit offset to yield a linear address.

For instance, the segmented address 6EFh:1234h has a segment selector of 6EFh, which corresponds to the 20-bit linear address 6EF0h. To this we add the offset, yielding the linear address 6EF0h + 1234h = 8124h.

A single linear address can be mapped to many segmented addresses. For instance, the linear address above (8124h) can have the segmented addresses 6EFh:1234h, 812h:4h and 0h:8124h (and many more).
PROTECTED MODE:
In protected mode, segmentation is used as amemory mechanism, providing memory isolation and contiguous addressing of non-contiguous physical memory.

On the 386 and later, programs issue logical (46-bit) addresses which go through the segmentation unit to be checked and translated into linear 32-bit addresses, before being sent to the paging unit (if enabled) which ultimately translates them into physical addresses (which are also 32-bit on the 386, but can be larger on more modern processors which support Physical Address Extension).
SECTION : (A)

REGISTERS
http://www.webopedia.com/TERM/R/register.html

The high speed storage area within the computer. Within which the data need to be represented .

For example, if two numbers are to be multiplied, both numbers must be in registers, and the result is also placed in a register. (The register can contain the address of a memory location where data is stored rather than the actual data itself.)

The number of the register the CPU has and the size which the register has determin the speed of the computer..

For example a 32-bit CPU is one in which each register is 32 bits wide. Therefore, each cpu instruction can manipulate 32 bits of data.

Usually, the movement of data in and out of registers is completely transparent to users, and even to programmers. Only assembly language programs can manipulate registers.

In high-level languages, the compiler is responsible for translating high-level operations into low-level operations that access registers.

To notify a manufacturer that you have purchased its product. Registering a product is often a prerequisite to receiving customer support, and it is one of the ways that software producers control software pira.

X86 REGISTER ARCHITECTURE

The Intel x86 processor uses complex instruction set computer (CISC) architecture, which means there is a modest number of special-purpose registers instead of large quantities of general-purpose registers. It also means that complicated special-purpose instructions will predominate.

The x86 processor traces its heritage at least as far back as the 8-bit Intel 8080 processor. Many peculiarities in the x86 instruction are due to the backward compatibility with that processor (and with its Zilog Z-80 variant).

Microsoft Win32 uses the x86 processor in32-bit flat mode. This documentation will focus only on the flat mode.

HTTP://MSDN.MICROSOFT.COM/EN-US/LIBRARY/CC267758.ASPX
REGISTERS
The x86 architecture consists of the following unprivileged integer registers:
	eax
	Accumulator

	ebx
	Base register

	ecx
	Count register

	edx
	Double-precision register

	esi
	Source index register

	edi
	Destination index register

	ebp
	Base pointer register

	esp
	Stack pointer

Operating on a subregister affects only the subregister and none of the parts outside the subregister. For example, storing to theaxregister leaves the high 16 bits of theeaxregister unchanged.

Two other registers are important for the processor's current state.
	eip
	instruction pointer

	flags
	flags

The instruction pointer is the address of the instruction being executed.

The flags register is a collection of single-bit flags. Many instructions alter the flags to describe the result of the instruction. These flags can then be tested by conditional jump instructions.
Calling Conventions
The x86 architecture has several different calling conventions. Fortunately, they all follow the same register preservation and function return rules:
· Functions must preserve all registers, except foreax,ecx, andedx, which can be changed across a function call, andesp, which must be updated according to the calling convention.

· Theeaxregister receives function return values if the result is 32 bits or smaller. If the result is 64 bits, then the result is stored in theedx:eaxpair.
The following is a list of calling conventions used on the x86 architecture:
· Win32 (__stdcall)
Function parameters are passed on the stack, pushed right to left, and the callee cleans the stack.
· Native C++ method call (also known as thiscall)
Function parameters are passed on the stack, pushed right to left, the "this" pointer is passed in theecxregister, and the callee cleans the stack.
· COM (__stdcallfor C++ method calls)
Function parameters are passed on the stack, pushed right to left, then the "this" pointer is pushed on the stack, and then the function is called. The callee cleans the stack.
· __fastcall
The first two DWORD-or-smaller arguments are passed in theecxandedxregisters. The remaining parameters are passed on the stack, pushed right to left. The callee cleans the stack.
· __cdecl
Function parameters are passed on the stack, pushed right to left, and the caller cleans the stack. The__cdeclcalling convention is used for all functions with variable-length parameters.
X86 FLAGS:
The following table lists the x86 flags:
	Flag
Code
	Flag Name
	Value
	Flag
Status
	Status Description

	of
	Overflow Flag
	0
1
	nv
ov
	No overflow
Overflow

	df
	Direction Flag
	0
1
	up
dn
	Direction up
Direction down

	if
	Interrupt Flag
	0
1
	di
ei
	Interrupts disabled
Interrupts enabled

	sf
	Sign Flag
	0
1
	pl
ng
	Positive (or zero)
Negative

	zf
	Zero Flag
	0
1
	nz
zr
	Nonzero
Zero

	af
	Auxiliary Carry Flag
	0
1
	na
ac
	No auxiliary carry
Auxiliary carry

	pf
	Parity Flag
	0
1
	pe
po
	Parity even
Parity odd

	cf
	Carry Flag
	0
1
	nc
cy
	No carry
Carry

	tf
	Trap Flag
	Iftfequals 1, the processor will raise a STATUS_SINGLE_STEP exception after the execution of one instruction. This flag is used by a debugger to implement single-step tracing. It should not be used by other applications.

	iopl
	I/O Privilege Level
	This is a two-bit integer, with values between zero and 3. It is used by the operating system to control access to hardware. It should not be used by applications.

CONDITIONS:
Aconditiondescribes the state of one or more flags. All conditional operations on the x86 are expressed in terms of conditions.

The assembler uses a one or two letter abbreviation to represent a condition. A condition can be represented by multiple abbreviations. For example, AE ("above or equal") is the same condition as NB ("not below"). The following table lists some common conditions and their meaning.
	Condition Name
	Flags
	Meaning

	Z
	ZF=1
	Result of last operation was zero.

	NZ
	ZF=0
	Result of last operation was not zero.

	C
	CF=1
	Last operation required a carry or borrow. (For unsigned integers, this indicates overflow.)

	NC
	CF=0
	Last operation did not require a carry or borrow. (For unsigned integers, this indicates overflow.)

	S
	SF=1
	Result of last operation has its high bit set.

	NS
	SF=0
	Result of last operation has its high bit clear.

	O
	OF=1
	When treated as a signed integer operation, the last operation caused an overflow or underflow.

	NO
	OF=0
	When treated as signed integer operation, the last operation did not cause an overflow or underflow.

Conditions can also be used to compare two values. Thecmpinstruction compares its two operands, and then sets flags as if subtracted one operand from the other. The following conditions can be used to check the result ofcmpvalue1,value2.
	Condition Name
	Flags
	Meaning after a CMP operation.

	E
	ZF=1
	value1==value2.

	NE
	ZF=0
	value1!=value2.

	GE
NL
	SF=OF
	value1>=value2.
Values are treated as signed integers.

	LE
NG
	ZF=1 or SF!=OF
	value1<=value2. Values are treated as signed integers.

	G
NLE
	ZF=0 and SF=OF
	value1>value2. Values are treated as signed integers.

	L
NGE
	SF!=OF
	value1<value2. Values are treated as signed integers.

	AE
NB
	CF=0
	value1>=value2. Values are treated as unsigned integers.

	BE
NA
	CF=1 or ZF=1
	value1<=value2. Values are treated as unsigned integers.

	A
NBE
	CF=0 and ZF=0
	value1>value2. Values are treated as unsigned integers.

	B
NAE
	CF=1
	value1<value2. Values are treated as unsigned integers.

TYPES OF REGISTERS:-
The main tools to write programs in x 86 assemblies are the processor registers. The registers are like variables built in the processor. Using registers instead of memory to store values makes the process faster and cleaner. The problem with the x86 series of processors is that there are few registers to use. This section describes the main use of each register and ways to use them. That in note that the rules described here are more suggestions than strict rules. Some operations need absolutely some kind of registers but most of the you can use any of the freely.

Here is a list of the available registers on the 386 and higher processors. This list shows the 32 bit registers. Most of the can be broken down to 16 or even 8 bits register.
GENERAL REGISTERS
 EAX EBX ECX EDX
SEGMENT REGISTERS
 CS DS ES FS GS SS
INDEX AND POINTERS
 ESI EDI EBP EIP ESP
INDICATOR
EFLAGS
GENERAL REGISTERS

As the title says, general register are the one we use most of the time Most of the instructions perform on these registers. They all can be broken down into 16 and 8 bit registers.
 32 bits : EAX EBX ECX EDX
 16 bits : AX BX CX DX
 8 bits : AH AL BH BL CH CL DH DL
 The "H" and "L" suffix on the 8 bit registers stand for high byte and low byte. With this out of the way, let's see their individual main use

1. EAX,AX,AH,AL : Called the Accumulator register.
 It is used for I/O port access, arithmetic, interrupt calls,
 etc...

2. EBX,BX,BH,BL : Called the Base register
 It is used as a base pointer for memory access
 Gets some interrupt return values

3. ECX,CX,CH,CL : Called the Counter register
 It is used as a loop counter and for shifts
 Gets some interrupt values

4. EDX,DX,DH,DL : Called the Data register
 It is used for I/O port access, arithmetic, some interrupt
 calls.
SEGMENT REGISTERS
Segment registers hold the segment address of various items. They are only available in 16 values. They can only be set by a general register or special instructions. Some of them are critical for the good execution of the program and you might want to consider playing with them when you'll be ready for multi-segment programming

CS : Holds the Code segment in which your program runs.

Changing its value might make the computer hang.

DS : Holds the Data segment that your program accesses.

Changing its value might give erronous data.

ES,FS,GS : These are extra segment registers available for

far pointer addressing like video memory and such.

SS : Holds the Stack segment your program uses.

Sometimes has the same value as DS.

Changing its value can give unpredictable results,

mostly data related.
THE EFLAGS REGISTER
The EFLAGS register hold the state of the processor. It is modified by many intructions and is used for comparing some parameters, conditional loops and conditionnal jumps. Each bit holds the state of specific parameter of the last instruction.

Here is a listing :

Bit Label Desciption

0 CF Carry flag

2 PF Parity flag

4 AF Auxiliary carry flag

6 ZF Zero flag

7 SF Sign flag

8 TF Trap flag

9 IF Interrupt enable flag

10 DF Direction flag

11 OF Overflow flag

12-13 IOPL I/O Priviledge level

14 NT Nested task flag

16 RF Resume flag

17 VM Virtual 8086 mode flag

18 AC Alignment check flag (486+)

19 VIF Virutal interrupt flag

20 VIP Virtual interrupt pending flag

21 ID ID flag

Those that are not listed are reserved by Intel.
UNDOCUMENTED REGISTERS

There are registers on the 80386 and higher processors that are not well documented by Intel. Undocumented registers are divided in to following types:
· control registers:CR0 to CR4

· debug registers: DR0 to DR7

· test registers : TR3 to TR7

· protected mode segmentation registers: GDTR (Global Descriptor Table Register), IDTR (Interrupt Descriptor Table Register), LDTR (Local DTR), and TR.
As far as I know, the control registers, along with the segmentation registers, are used in protected mode programming, all of these registers are available on 80386 and higher processors except the test registers that have been removed on the pentium.

http://www.pouet.free.fr/spip/IMG/html/x86reg.html
REGISTER SIZE
http://www.pcguide.com/ref/cpu/arch/int/compRegisters-c.html

The width (in bits) of the processor's registers determine how much data it can compute with at a time. This is sometimes used to label the processor's "size". For example, you may hear people talk about a "16 bit processor" or a "32 bit processor". This term normally refers to the register size within the CPU. The term is also however often misused, and sometimes people refer to the size of a processor based on its data bus width (for example) which isn't really correct. Interestingly, every processor introduced in the last decade, from the earliest 386SX to the latest PentiumII or K6, is a 32 bit processor, based on this definition. So this isn't going to be something you use to differentiate between CPUs. :^)

The more registers in the processor, the more flexibility programmers have to write better code. However, it increases the complexity of the processor. Here too, compatibility is an issue, and later processors are stuck with the limitations of the early processor designs.
CPU RESISTER
http://www.scribd.com/doc/11639525/CPU-Registers

Cpu register are very special memory location constructed from flip flops.they are not part of main memory;cpu implement them on chips.various members of 80*86 have different register size.

The 886,8286,8486 (x86 from now on)cpus have exactly 4 registers.all 16 bits wide.all arithmetic and location operation occur in the cpu registers.

Because the x86 processor has few resisters.we will give each registers its own name.and refer it to by its name rather then its address.the name for the x86 registers are:

AX:accumulator register

BX:base address register

CX:count register

DX:data register

Beside the above register which are visible by the programmers,the x86 processor also known as tha instrucation pointer register which contain the address of the next instruction for the execution.

There is also a flag register which holds the result of the comparison.the flag register remember if one value was less ,equal to, or greater than another value.

Because register are on-chip and handled specially by the cpu,they are much faster than memory.accesing a memory required one or more then one clock cycles.accesing data in register usually takes 0 clock cycles.

Therefore you should try to keep varable in registers.register sets are very small and most registers have special purposes which limit their use as variable, but they are still excellent place to store temporary data.
SECTION :(B)

CACHE
http://www.blurtit.com/q545283.html

Cache memory is random access memory (RAM) that a computer or microprocessor can access more quickly than it can access regular RAM.As the microprocessorprocesses data, it looks first in the cachememoryand if it finds the data there (from a previous reading of
data), it does not have to do the more time-consuming reading of data
from largermemory.

Two types of caching are commonly used in personal computers: MEMORY caching and DISK caching.

A memory cache: Sometimes called a cache store or RAM cache, is a portion of memory made of high-speed staticRAM (SRAM) instead of the slower and cheaper dynamic RAM (DRAM) used for main memory. Cache memory dramatically raises the performance of a computer system at relatively little cost

A disk cache :is a portion of a systemmemory used to cache reads and writes to the hard disk. It may be referred to as the most important type of cache on thePC, because of the greatest differential speed between the layers, that is the system RAM and the hard disk. Disk caching works under the same principle as memory caching, but instead of using high-speed SRAM, a disk cache uses conventional main memory.
A small memory that provides the CPU with low latency and high
Bandwidth access
· Typically hardware management of which memory locations reside in cache at any point in time

· Can be entirely software managed, but this not commonly done today (may become more common on multiprocessor systems for managing coherence)
MULTIPLE LEVELS OF CACHE MEMORY POSSIBLE
Each level is typically bigger but slower; faster levels SRAM, slower levels may be DRAM
BANDWIDTH -- DETERMINED BY INTERCONNECTION TECHNOLOGY
· On-chip limited by number of bits in memory cell array

· Off-chip limited by number of pins and speed at which they can be clocked
LATENCY -- DETERMINED BY INTERCONNECTION TECHNOLOGY & MEMORY SPEED
· On-chip can be one or more clocks, depending on connect/cycle delays

· Off-chip is likely to be 3-10 clocks, depending on system design
MAJOR CACHE DESIGN DECISIONS
· CACHE SIZE--in bytes

· SPLIT/UNIFIED--instructions and data in same cache?

· ASSOCIATIVELY--how many sectors in each set?

· SECTOR/BLOCK SIZE--how many bytes grouped together as a unit?

· MANAGEMENT POLICIES:-
1. Choosing victim for replacement on cache miss

2. Handling writes (when is write accomplished?; is written data cached?)

3. Ability to set or over-ride policies in software
HOW MANY LEVELS OF CACHE?
1.Perhaps L1 cache on-chip; L2 cache on-module; L3 cache on motherboard.
CACHE ADDRESSING

EXAMPLE CACHE LOOKUP OPERATION

Block size
· Cache is organized into blocks of data that are moved as a whole

· Blocks can range from 4 bytes to 256 bytes or more in size

· Blocks are loaded and stored as a single unit to/from the cache
·# blocks = cache size / block size
example: 8 KB cache with 64-byte blocks:
· # blocks = 8192 / 64 = 128 blocks
example: 8 KB cache with 64-byte blocks:
· # blocks = 8192 / 64 = 128 blocks
CACHE ASSOCIATIVITY
When a cache block must be replaced with a new one, the cache logic

Determines which block to replace from a set of candidate blocks
· Fully associative: the set consists of all blocks in the cache

· N-way set associative: the set consists of n blocks
– For example, 4-way set associative means that there are 4 candidates
· Direct mapped: there is only one block that can be replaced (1-way set
Associative)

· # sets = # blocks / n

· example: 256 B cache:

16-byte blocks,

2-way set associative,

16 blocks
· #sets = (256/16) / 2
= 8 sets
(1) REASON OF CACHE
http://communities.siliconindia.com/forum/ComputerSociety//6694

Caches are useful when two or more components need to exchange data, and the components perform transfers at differing speeds. Caches solve the transfer problem by providing a buffer of intermediate speed between the components. If the fast device finds the data it needs in the cache, it need not wait for the slower device. The data in the cache must be kept consistent with the data in the components. If a component has a data value change, and the datum is also in the cache, the cache must also be updated. This is especially a problem on multiprocessor systems where more than one process may be accessing a datum. A component may be eliminated by an equal-sized cache, but only if:
· (a) the cache and the component have equivalent state-saving capacity (that is, if the component retains its data when electricity is removed, the cache must retain data as well), and

· (b) the cache is affordable, because faster storage tends to be more expensive.
SECTION-C

RAM

RANDOM ACCESS MEMORY
What is the reason behind using the RAM:

If we ask to the general people that what is the use of the RAM then his answer will be the limited that it stores the temporarily data but we know that hard disks is also used to store the data and if we compare Ram to the hard disk then we found that RAM is far precious then the HARD disks. So why RAM is needed to store the data temporarily? why we not use the hard disks instead of RAM ? The answer now is technological.

Technically, RAM is any form of electronic storage. It is used most often to identify fast, temporary forms of storage. If the computer's CPU had to constantly access the hard drive to retrieve every piece of data it needs, it would operate very slowly because the hard drive has mechanical moving parts like motors that rotate the disk plates and arms. Eventually this makes it slow. When the information is kept in RAM, the CPU can access it much more quickly. Most forms of memory are intended to store data temporarily.

Computer memory is extremely important to computer operation. Files and programs are loadedinto memory from external media like fixed disks (hard drives) and removable disks (floppies tapes). Memory can be built right into a system board, but it is more typically attached to the system board in the form of a chip or module. Inside these chips are microscopic digital switches which are used to represent binary data.

People in the computer industry commonly use the term "memory" to refer to RAM (Random Access Memory). As processor cranks on any process, it uses RAM to store some of the data needed to make the process in running way. While all forms of memory work together, RAM is considered the main memory since most data, regardless of its source, is stored in RAM before it is registered in any other storage device. Consequently, RAM is used millions of times every second. A computer uses Ram to hold temporary instructions and data needed to complete tasks. This enables the computer's CPU (Central Processing Unit), to access instructions and data stored in memory very quickly.
TYPES OF RAM
There are three main types of RAM. It is SDRAM, DDR and Rambus DRAM
1. SDRAM (SynchronousDRAM)
SDRAM memory stands for short Synchronous DRAM, a type of DRAM that can run at much higher clock speeds than conventional memory. SDRAM Memory actually synchronizes itself with the CPU's bus and is capable of running at 133 MHz (officially), about three times faster than conventional FPM RAM, and about twice as fast EDO DRAM and BEDO DRAM. SDRAM is replacing EDO DRAM in many newer computers." SDRAM is not an extension of older EDO DRAM but a new type of DRAM altogether. SDRAM started out running at 66 MHz, while older fast page mode DRAM and EDO max out at 50 MHz. SDRAM is able to scale to 133 MHz (PC133) officially, and unofficially up to 180MHz or higher.
2. DDR (Double Data Rate SDRAM)
DDR basically doubles the rate of data transfer of standard SDRAM by transferring data on the up and down tick of a clock cycle. DDR memory operating at 333MHz actually operates at 166MHz * 2 (aka PC333 / PC2700) or 133MHz*2 (PC266 / PC2100). DDR is a 2.5 volt technology that uses 184 pins in its DIMMs. It is incompatible with SDRAM physically, but uses a similar parallel bus, making it easier to implement than RDRAM, which is a different technology
3 RambusDRAM (RDRAM)
It is the high-performance memory that can transfer data at rates of 800 megahertz and higher. RDRAM has double the maximum throughput of old PC100 SDRAM, but a higher latency. RDRAM designs with multiple channels, such as those in Pentium 4 motherboards, are currently at the top of the heap in memory throughput, especially when paired with PC1066 RDRAM memory.

References: 1. http://www.sdrammemory.net/

2. http://computer.howstuffworks.com/ram3.htm
