

Type 1 Portfolio: Matrix Binomials

Hudson Liao 12/7/2008

I was given the expression $X = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ and $Y = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$, where I calculate

 X^2 , X^3 , X^4 , X^4 . Below I calculated X^2 and made my way up to X^4 , where I also did the same with Y^2 to Y^4 .

$$\mathsf{X}^{2} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} x \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} (1 \times 1) + (1 \times 1) & (1 \times 1) + (1 \times 1) \\ (1 \times 1) + (1 \times 1) & (1 \times 1) + (1 \times 1) \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$

$$X^{3} \text{ or } X^{2} * X^{1} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} x \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} (2 \times 1) + (2 \times 1) & (2 \times 1) + (2 \times 1) \\ (2 \times 1) + (2 \times 1) & (2 \times 1) + (2 \times 1) \end{bmatrix} = \begin{bmatrix} 4 & 4 \\ 4 & 4 \end{bmatrix}$$

$$X^{4} \text{ or } X^{3} * X^{1} = \begin{bmatrix} 4 & 4 \\ 4 & 4 \end{bmatrix} x \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} (4 \times 1) + (4 \times 1) & (4 \times 1) + (4 \times 1) \\ (4 \times 1) + (4 \times 1) & (4 \times 1) + (4 \times 1) \end{bmatrix} = \begin{bmatrix} 8 & 8 \\ 8 & 8 \end{bmatrix}$$

$$\mathsf{Y}^2 = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} (1 \times 1) + (-1 \times -1) & (1 \times -1) + (-1 \times -1) \\ (-1 \times 1) + (1 \times -1) & (-1 \times -1) + (1 \times 1) \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$$

$$Y^3$$
 or $Y^{2*}Y^1 =$

$$\begin{bmatrix}2&-2\\-2&2\end{bmatrix}x\begin{bmatrix}1&-1\\-1&1\end{bmatrix}=\begin{bmatrix}(2\times1)+(-2\times-1)&(2\times-1)+(-2\times1)\\(-2\times1)+(2\times-1)&(-2\times-1)+(2\times1)\end{bmatrix}=\begin{bmatrix}4&-4\\-4&4\end{bmatrix}$$

$$Y^4$$
 or $Y^{3+} * Y^1 =$

$$\begin{bmatrix} 4 & -4 \\ -4 & 4 \end{bmatrix} x \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} (4 \times 1) + (-4 \times -1) & (4 \times -1) + (-4 \times 1) \\ (-4 \times 1) + (4 \times -1) & (-4 \times -1) + (4 \times 1) \end{bmatrix} = \begin{bmatrix} 8 & -8 \\ -8 & 8 \end{bmatrix}$$

Now I am going to find and expression for: [Xⁿ, Yⁿ, (X+Y)ⁿ], by inputting different 'n' values. By doing this I can find a correlation between each variable.

Expression: $X^n = 2^{(n-1)} X$

This general statement was found by finding a relationship through values from X^1 to X^4 . In the X^n table, a pattern begins to form from 1X, 2X, 4X and 8X. If we simplify these numbers by using a constant value such as $1X = 2^0X$ we can find a general statement for this expression.

Xn
$X^1 = 1X = 2^0X$
$X^2 = 2X = 2^1X$
$X^3 = 4X = 2^2X$
$X^4 = 8X = 2^3X$

Expression: $Y^n = 2^{(n-1)} Y$

The same method to determine the general statement for the expression $X^n = 2^{(n-1)} X$ was also used for $Y^n = 2^{(n-1)} Y$.

Yn	
$Y^1 = 1Y = 2^0Y$	
$Y^2 = 2Y = 2^1Y$	
$Y^3 = 4Y = 2^2Y$	
$Y^4 = 8Y = 2^3Y$	

I am going to determine the expression for $(X+Y)^n$ by letting $X = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ and $Y = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$. Therefore the expression would look like:

$$(X+Y)^n = \begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \end{pmatrix}^2 = \begin{pmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \end{pmatrix} = \ 2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

The resultant matrix is $2\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

(X+Y) ⁿ	
2I	
4I	
8I	
16I	

We know that the Identity Matrix is $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

$$\therefore (X+Y)^n = (2I)^n$$

However I^n is an identity matrix $: I^n = I$

$$\therefore (X+Y)^n = 2^n I$$

I am going to prove that this expression works with (X+Y)ⁿ:

Calculation:

$$(X+Y)^n$$
 n=2

My expression:
$$(X+Y)^2 = 2^2I = 4\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 $\therefore 4I$

With $(X+Y)^n$:

$$\left(\begin{bmatrix}1 & 1\\ 1 & 1\end{bmatrix} + \begin{bmatrix}1 & -1\\ -1 & 1\end{bmatrix}\right)^2 = \begin{bmatrix}2 & 0\\ 0 & 2\end{bmatrix}^2$$

$$\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} x \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} (2x2) + (0x0) & (-2x0) + (0x2) \\ (0x2) + (0x2) & (0x0) + (2x2) \end{bmatrix}$$

$$=\begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$$

$$=4\begin{bmatrix}1&0\\0&1\end{bmatrix}$$
 $\therefore 4I$

As well, since 'X' and 'Y' are singular matrices, they cannot be raised to a negative exponent since the determinant is zero.

$$\blacktriangle^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$X^{-1} = \frac{1}{(1x1) - (1x1)} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
$$\det(X) = 1 - 1 = 0$$
$$Y^{-1} = \frac{1}{(1x - 1) - (-1x1)} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
$$\det(Y) = -1 + 1 = 0$$

In this section I am going use another two expression: $A^n = 6X$ and $B^n = 7$, where '6' and ${\mathcal T}$ are constants. I am going to use different values for both of the constants 'c' and ${\mathcal T}$ to calculate A^2 , A^3 , A^4 ; B^2 , B^3 , B^4 .

First, I am going to find \mathbb{A}^2 for the expression $\mathbb{A}^n = \mathcal{L}$ and use 4 different constants for ' \mathcal{L} ', where I am going to let $X = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

Calculation:

$$n=2$$
 (with calculator) $n=3$ $a=2$ $n=4$ $a=2$

$$A^{2} = \alpha^{2} X^{2}$$

$$A^{2} = (2)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2}$$

$$A^{2} = (3)^$$

Now I am going to create a table for $[A = \angle X]$ with all the different 'n' values and ' $\angle X$ values:

	n=2	n=3	n=4
<i>€</i> ±1	2X	4X	8X
<i>€</i> ±2	8X	32X	128X
<i>€</i> ±3	18X	108X	648X
€ 4	32X	256X	2048X

Now I am going to find all the Bⁿ by using the expression Bⁿ = ∇Y and use 4 different constants for ∇T , where I am going to let $Y = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$

	n=2	n=3	n=4
7 =1	2Y	4Y	8Y
⊘ =2	8Y	32Y	128Y
7 =3	18Y	108Y	648Y
7 =4	32Y	256Y	2048Y

By considering integer powers of $\bf A$ and $\bf B$, find expression for $\bf A^n$, $\bf B^n$ and $(\bf A+B)^n$

For the statement A = CX, I am going to determine a general formula by inputting different numbers for the constant 'C' and as well for the terms 'B'.

If I input 4 and 3 into 1 into 1 in 1 input 4 and 3 into 1 input 4 into 1 input 4 into 1 input 4 input 4 into 1 input 4 inp

$$A^2 = \left(1 \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}\right)^2$$

$$=\begin{bmatrix}2&2\\2&2\end{bmatrix}$$

$$= 2X$$

However if I continue to input and change the terms 'n' to 3 and 4 a pattern begins to form:

$$A^{3} = \begin{pmatrix} 1^{3} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \end{pmatrix}^{3}$$

$$A^{4} = \begin{pmatrix} 1^{4} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \end{pmatrix}^{4}$$

$$= 1 \begin{bmatrix} 4 & 4 \\ 4 & 4 \end{bmatrix}$$

$$= 4X$$

$$= 8X$$

By changing the terms -2 up to -2 X' increases each time from, 2X, 4X to 8X. The number of X's that is being increased is resulted from this expression, " 2^{n-1} ". Therefore, we can convert the formula -1 to:

$$A^{n} = a^{n}X^{n}$$

$$A^{n} = a^{n}2^{n-1}X$$

The same expression can be also used for the statement B= \mathbf{X} Y because both of the statements, \mathbf{A} = \mathbf{C} X and B= \mathbf{X} Y have the same pattern. The only difference between the two statements is that 'X' and 'Y' have different matrices. Therefore we just change, \mathbf{A} n to \mathbf{B} n by:

$$A^{n} = a^{n} 2^{n-1} X$$

$$B^n = b^n 2^{n-1} Y$$

If the same values that were inputted for $A^n = CX$ to $B^n = TY$, the resultant values will be exactly the same with 'X' being 'Y':

$$B^{2} = \begin{pmatrix} 1^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \end{pmatrix}^{2}$$

$$B^{3} = \begin{pmatrix} 1^{3} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \end{pmatrix}^{3}$$

$$B^{4} = \begin{pmatrix} 1^{4} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \end{pmatrix}^{4}$$

$$= 1 \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$$

$$= 1 \begin{bmatrix} 4 & -4 \\ -4 & 4 \end{bmatrix}$$

$$= 1 \begin{bmatrix} 8 & -8 \\ -8 & 8 \end{bmatrix}$$

$$= 2Y$$

$$= 4Y$$

$$= 8Y$$

The expression for $(A+B)^n$ can be found by inputting different values in the expression for $A^n = CX$ and $B^n = CX$. Therefore by inputting different values or same values for the constants 'C' and C raised to the power of 'C'.

If we input the constants with the same values like And Febraised to the power of Fe2

$$(A + B)^{n} = [(a^{n}2^{n-1}X) + (b^{n}2^{n-1}Y)]^{n}$$

$$= [(1^{2}2^{2-1}X) + (1^{2}2^{2-1}Y)]^{2}$$

$$= (1\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} + 1\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix})^{2}$$

$$= \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} \qquad \therefore 4\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 4I$$

The resultant value for this expression contains an identity matrix when both of the values constants 'c' and 'are the same; however, there are some limitations. If the constants 'c' and 'are contained different values such as (a=3 b=-12) the resultant matrix would differ, therefore the Identity Matrix cannot be used.

Let a=-3, b=5 and n=3

$$(A + B)^n = [(aX) + (bY)]^n$$

$$= [(-3X) + (5Y)]^3$$

$$= \begin{bmatrix} 392 & -608 \\ -608 & 392 \end{bmatrix} \qquad \therefore 8 \begin{bmatrix} 49 & -76 \\ -76 & 49 \end{bmatrix}$$

Therefore the expression for $(A+B)^n$ would be:

 2^n = the individual numbers in the matrix raised to the power of 'n', not counting the zeros.

$$2^n = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

If I let a=5, b=-7 and n =3 with the expression $(A + B)^n = [(aX) + (bY)]^n$ than the expression where

 2^n = the individual numbers in the matrix raised to the power of 'n', not counting the zeros, will work as well.

I used a calculator to calculate this expression:

$$(A + B)^n = [(5X) + (-7Y)]^3$$

$$= \begin{bmatrix} -872 & 1972 \\ 1872 & -872 \end{bmatrix} \qquad \therefore 8 \begin{bmatrix} -109 & 234 \\ 234 & -109 \end{bmatrix}$$

The general statement:

 2^n = the individual numbers in the matrix raised to the power of 'n', not counting the zeros

$$2^n = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

n = 3

$$2^{3}\begin{bmatrix} -109 & 234 \\ 234 & -109 \end{bmatrix} = \begin{bmatrix} -872 & 1972 \\ 1872 & -872 \end{bmatrix}$$

In this expression there are some limitations where 'n' cannot equal zero nor a negative value.

The expression $M = \begin{pmatrix} a+b & a-b \\ a-b & a+b \end{pmatrix}$ can also be derived into M = A+B and $M^2 = A^2 + B^2$. By proving the expression M = A+B, \blacksquare and \blacksquare needs to be substituted for \blacksquare X and \blacksquare Y as well as keeping the constants as a variable. This will prove the expression $M = \begin{pmatrix} a+b & a-b \\ a-b & a+b \end{pmatrix}$ through M = A+B.

$$M = aX + bY$$

$$\begin{split} M &= a \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} + b \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \\ M &= \begin{bmatrix} a & a \\ a & a \end{bmatrix} + \begin{bmatrix} b & -b \\ -b & b \end{bmatrix} \\ M &= \begin{bmatrix} a+b & a-b \\ a-b & a+b \end{bmatrix} \end{split}$$

Now I am going to substitute \blacktriangle and B for \rightleftharpoons and \rightleftharpoons for the expression $M^2 = A^2 + B^2$.

$$\begin{split} M^2 &= (aX)^2 + (bY)^2 \\ \begin{bmatrix} a+b & a-b \\ a-b & a+b \end{bmatrix} \begin{bmatrix} a+b & a-b \\ a-b & a+b \end{bmatrix} = \left(a\begin{bmatrix}1 & 1 \\ 1 & 1\end{bmatrix}\right)^2 \left(b\begin{bmatrix}1 & -1 \\ -1 & 1\end{bmatrix}\right)^2 \\ \begin{bmatrix} (a+b)(a+b) + (a-b)(a-b) & (a+b)(a-b) + (a-b)(a+b) \\ (a-b)(a+b) + (a+b)(a-b) & (a-b)(a-b) + (a+b)(a+b) \end{bmatrix} = a^2\begin{bmatrix}2 & 2 \\ 2 & 2\end{bmatrix}b^2\begin{bmatrix}2 & -2 \\ -2 & 2\end{bmatrix} \\ \begin{bmatrix} (a^2+2ab+b^2) + (a^2+2ab+b^2) & (a^2-b^2) + (a^2-b^2) \\ (a^2-b^2) + (a^2-b^2) & (a^2+2ab+b^2) + (a^2+2ab+b^2) \end{bmatrix} = \begin{bmatrix} 2a^2 & 2a^2 \\ 2a^2 & 2a^2 \end{bmatrix} + \begin{bmatrix} 2b^2 & -2b^2 \\ -2b^2 & 2b^2 \end{bmatrix} \\ \begin{bmatrix} 2a^2+2b^2 & 2a^2-2b^2 \\ 2a^2-2b^2 & 2a^2+2b^2 \end{bmatrix} = \begin{bmatrix} 2a^2+2b^2 & 2a^2-2b^2 \\ 2a^2-2b^2 & 2a^2+2b^2 \end{bmatrix} \end{split}$$

Therefore the general statement that expresses Mⁿ in terms of and could be expressed as:

$$M^n = (aX)^n + (bY)^n$$

Test the validity of your general statement by using different values of a and d

First I am going to use the general statement $M^n = (aX)^n + (bY)^n$ and then prove this general statement by using the expression $M = \begin{pmatrix} a+b & a-b \\ a-b & a+b \end{pmatrix}$.

Let
$$C \neq 3$$
 $T = V = V$
 $M^n = (aX)^n + (bY)^n$
 $M^4 = (3X)^4 + (4Y)^4$
 $= \begin{pmatrix} 3^4 \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^4 \end{pmatrix} + \begin{pmatrix} 4^4 \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}^4 \end{pmatrix}$
 $= \begin{pmatrix} 81 \begin{bmatrix} 8 & 8 \\ 8 & 8 \end{bmatrix} \end{pmatrix} + \begin{pmatrix} 256 \begin{bmatrix} 8 & -8 \\ -8 & 8 \end{bmatrix} \end{pmatrix}$
 $= \begin{bmatrix} 2696 & -1400 \\ -1400 & 2696 \end{bmatrix}$
 $= \begin{bmatrix} 37 & -1 \\ -1 & 7 \end{bmatrix}$
 $= \begin{pmatrix} 2696 & -1400 \\ -1400 & 2696 \end{pmatrix}$
 $= 8 \begin{pmatrix} 337 & 175 \\ 175 & 337 \end{pmatrix}$

$= 8 \begin{bmatrix} 337 & 175 \\ 175 & 337 \end{bmatrix}$ Let $C = 0.5$, $P = 2$ $M^{n} = (aX)^{n} + (bY)^{n}$ $M^{2} = (-1X)^{2} + (0.5Y)^{2}$ $= \left(-1^{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}^{2} \right) + \left(0.5^{2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}^{2} \right)$	$M^{n} = \begin{pmatrix} a+b & a-b \\ a-b & a+b \end{pmatrix} \cdot ^{n}$ $M^{2} = \begin{pmatrix} -1+0.5 & -1-0.5 \\ -1-0.5 & -1+0.5 \end{pmatrix}^{2}$ $= \begin{pmatrix} -0.5 & -1.5 \\ -1.5 & -1.5 \end{pmatrix}^{2}$
$M^2 = (-1X)^2 + (0.5Y)^2$	

By finding if there are any limitations within this expression: $M^n = (aX)^n + (bY)^n$, I am going to change the constants 'a' and "a' converged howell be constants." into , decimals, fractions and negative exponents.

The first example I am going to prove that this general statement has some limitations: Let \$\frac{1}{2} \cdot 0.3 \sqrt{2} = 0.32 and \sqrt{2} = 3

$$\begin{array}{l} M^{-3} = (0.3X)^{-3} + (0.32Y)^{-3} \\ M^{-3} = \begin{pmatrix} 0.3 \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \end{pmatrix}^{-3} + \begin{pmatrix} 0.32 \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \end{pmatrix}^{-3} \end{array}$$

As I plug this equation into my calculator it comes up with: (error domain). As a result this equation cannot be solved because the matrix cannot be raised to a negative power. Therefore the limitation in this expression is that '" cannot be a negative number.

In this second example I am going let $^{\prime\prime\prime}$ equal to a positive integer and the constants and $^{\prime\prime\prime}$ equal zero:

Let
$$a = 0$$
 $b = 0$ $n = 3$

$$M^{3} = (0X)^{3} + (0Y)^{3}$$

$$M^{3} = \left(0\begin{bmatrix}1 & 1\\1 & 1\end{bmatrix}\right)^{3} + \left(0\begin{bmatrix}1 & -1\\-1 & 1\end{bmatrix}\right)^{3}$$

$$= \begin{bmatrix}0 & 0\\0 & 0\end{bmatrix}$$

The limitation for the expression $M^n = (aX)^n + (bY)^n$ is that ' \mathcal{P} ' cannot contain a negative exponent nor a decimal value or a fraction because if we multiply an

exponent raised to a negative number it would make the value flip. However, both of the constants 'and and can equal to any set of real numbers. Therefore the limitations and scope are:

 $n \in \mathbb{Z}^+$ $a \& b \in \mathbb{R}$.

Use an algebraic method to explain how you arrived at your general statement.

The general statement that came from M = A + B and $M^2 = A^2 + B^2$ is $M^n = (aX)^n + (bY)^n$. This general statement should equal to $M = \begin{pmatrix} a+b & a-b \\ a-b & a+b \end{pmatrix}$. To prove that this general statement equals to $M = \begin{pmatrix} a+b & a-b \\ a-b & a+b \end{pmatrix}$, I am going to expand the equation $M^n = (aX)^n + (bY)^n$ by using only variables:

$$\begin{aligned} M^2 &= (aX)^2 + (bY)^2 \\ &= \left(a\begin{bmatrix}1 & 1\\1 & 1\end{bmatrix}\right)^2 \left(b\begin{bmatrix}1 & -1\\-1 & 1\end{bmatrix}\right)^2 \\ &= a^2 \begin{bmatrix}2 & 2\\2 & 2\end{bmatrix}b^2 \begin{bmatrix}2 & -2\\-2 & 2\end{bmatrix} \\ &= \begin{bmatrix}2a^2 & 2a^2\\2a^2 & 2a^2\end{bmatrix} + \begin{bmatrix}2b^2 & -2b^2\\-2b^2 & 2b^2\end{bmatrix} \\ &= \begin{bmatrix}(a+b)(a+b) + (a-b)(a-b) & (a+b)(a-b) + (a-b)(a+b)\\(a-b)(a+b) + (a+b)(a-b) & (a-b)(a-b) + (a+b)(a+b)\end{bmatrix} \end{bmatrix} \\ &= \begin{bmatrix}2a^2 + 2b^2 & 2a^2 - 2b^2\\2a^2 - 2b^2 & 2a^2 + 2b^2\end{bmatrix} \\ &= \begin{bmatrix}(a^2 + 2ab + b^2) + (a^2 - 2ab + b^2) & (a^2 - b^2) + (a^2 - 2ab + b^2)\\(a^2 - b^2) + (a^2 - b^2) & (a^2 + 2ab + b^2) + (a^2 - 2ab + b^2)\end{bmatrix} \\ &= \begin{bmatrix}2a^2 + 2b^2 & 2a^2 - 2b^2\\2a^2 - 2b^2 & 2a^2 + 2b^2\end{bmatrix} \end{aligned}$$

$$\begin{bmatrix} 2a^2 + 2b^2 & 2a^2 - 2b^2 \\ 2a^2 - 2b^2 & 2a^2 + 2b^2 \end{bmatrix} = \begin{bmatrix} 2a^2 + 2b^2 & 2a^2 - 2b^2 \\ 2a^2 - 2b^2 & 2a^2 + 2b^2 \end{bmatrix}$$

Therefore the equation $M^n = (aX)^n + (bY)^n$ equals with $M = \begin{pmatrix} a+b & a-b \\ a-b & a+b \end{pmatrix}$.

However, the equation $M^n = (aX)^n + (bY)^n$ would not work unless it is proven by the binomial theorem.

$$\sum_{k=0}^{n} \frac{n}{k} X^{n-k} y^k$$

$$M^n = (A+B)^n$$

$$(A+B)^2 = A^2 + 2AB + B^2$$

$$\begin{split} &= \begin{bmatrix} 2a^2 & 2a^2 \\ 2a^2 & 2a^2 \end{bmatrix} + 2 \begin{bmatrix} ab - ab & -ab + ab \\ ab - ab & -ab + ab \end{bmatrix} + \begin{bmatrix} 2b^2 & -2b^2 \\ -2b^2 & 2b^2 \end{bmatrix} \\ &= \begin{bmatrix} 2a^2 & 2a^2 \\ 2a^2 & 2a^2 \end{bmatrix} + 2 \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 2b^2 & -2b^2 \\ -2b^2 & 2b^2 \end{bmatrix} \\ &= \begin{bmatrix} 2a^2 & 2a^2 \\ 2a^2 & 2a^2 \end{bmatrix} + \begin{bmatrix} 2b^2 & -2b^2 \\ -2b^2 & 2b^2 \end{bmatrix} \quad \therefore A^2 + B^2 \end{split}$$

This calculations tells us that AB must equal to zero for this equation to work $AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. As said before the only way the equation $M^n = (aX)^n + (bY)^n$ works is because 2(aX)(bY) equals to a zero matrix: $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.

In the end, the expression $M^n=(aX)^n+(bY)^n$ can be substituted into a different equation where $(cX)^n+(cY)^n$ can be replaced as $[(a^n2^{n-1}X)+(b^n2^{n-1}Y)]^n$.

$$M^n = (aX)^n + (bY)^n$$

$$M^n = (a^n 2^{n-1} X)^n + (b^n 2^{n-1} Y)^n$$