Internal Assessment 1

Solution for finding the sum of a infinite sequence

The objective of this assignment is to find out the sum of infinite sequences t,,, where
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In this equation, t is defined by the term number. For example, t, is the first term,
whereas t,, is the n™ term. x and a are various variables. In this equation, n! which is
defined by n! = n(n — 1)(n —2) ...3 X 2 % 1. Likewise 3! is defined by 3! = 3 x 2 x 1, but
there is an exception 0! = 1.

First | will break down the equation so that it will be easier for me to find out he formula.
| will examine the 5,, defined as the sum of the first t,,. For example, 5, = t, + t,,

. . . . (1ln )™
53 =ty +t, + t;. | amfirst going to use this equation t,, = 1 — 2 ,Wherex=1,a =2,
and where nis 0 = n = 10. So it should look like this:
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| will find out the 5,, for 0 < n < 10.
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In order to find 5,,, | used my TI-84 Plus to figure this out. | will plug in the equation

_ (xlna)™
no nt

where the x is 1, a is 2 and n value is from 0 to 10. The method is shown in

the appendix.
| came up with:

t, =1 t; & 0.055504
t, & 0.693147 t, & 0.009618

t, & 0.240226 t. & 0.001333



t. & 1.5403530 x 10™* ty & 1.017809 x 1077
t, & 1525273 X 107° tp ¥ 7.054911 x 1077

ts & 1.321549 x 107

In order to check if | got it right, | used Microsoft Excel 2010. The method is shown in
the appendix.
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After seeing that my result matches the results in Excel, | decided to then find out the
sum. | found out the sum using my TI-84 Plus. The method is shown in the appendix.

This is what | did in order to get 5,, for 0 < n < 10.
S5,=1 < | got 1 because of t;.

5, =5,+t; € Heres5,isequal to 5, plus t; because 5; is the sum of the pervious
term. So if | add t, which is term number 1, it will give me the S,. | will use
this formula 5, = 5,4, +t,, to find out the sum’s up to n = 10.

5, =5,+t; € Now, we can sub 5; as 1and t, as 0.693147

5, & 140693147



~ 5, & 1.693147
5n= Sin-n) T,
Heren =2, so
5;=5@-n tt;
S,=S,+t,
5,7 1.693147 + 0.240226
5,7 1.933373

| did this for 5,, wheren =0 =n < 10

5, & 1.988878 5, & 1.999999
5., 7 1.998496 5, & 2,000000
5. A& 1.999329 5, ® 2.000000
5. ®& 1.999983 S5 & 2.000000

On the other hand, | used Microsoft Excel 2010 to do it for me too. | got the same
results. The method to do this is shown in the appendix.
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b 1 0.693147 1.693147
i 2 0.240227 1.933374
gl 3 0.055504 1.988878
bl 4 0.009618 1.998496
b s 0.001333 1.999829
| 6 0.000154 1.999983
7 0.000015 1.999999
8 0.000001 2.000000
9 0.000000 2.000000
0.000000 2.000000
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Because | got the same result, | will use Excel to graph. The method is shown in the
Appendix.
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By looking at this graph, | can say that when n value is past 10, the 5,, is 2 and remains
as itis. So, as the n value increases, the 5,, remains the same.
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Now | will examine another sequence, and | will find out the sum of t,, = o where

x=1,a =3, and n where it goes from 0 to 10 (0 < n < 10). So it should look like this:

_(1n3)* (1lm3)*  (1ln3)* (1n3)* _(1In3)*
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| will find out the 5,,forn =0 <n < 10.
500515:,55...54

In order to find S,,, | will only use Microsoft Excel 2010 since | know that it gave me the
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right result before. | will plug in the equation t,, = e where the x is 1, ais 3and n

value is from 0 to 10. The method is shown in the appendix.
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= fn n:
4 0 1 1
5 1 1.098612 2.098612
6 2 0.603474 2.702087
7 3 0.220995 2.923082
3 4 0.060697 2.983779
9 5 0.013336 2.997115
10 6 0.002442 2.999557
11 7 | 0.000383 l 2.999940
12 8 0.000053 2.999993
13 9 0.000006 2.999999
14 10 0.000001 3.000000
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16
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To find the results, | just subbed in 3 instead if a = 2. Now | will graph it using the same
process:
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By looking at this graph, | can say that when n value is past 10, 5,, is 3 and it remains
constant. This suggests that when n approaches @ (infinity), sum of the infinity (5..)
value is 3.

After looking at the two sum, when a = 2, and when a = 3, | think that the general term

Where 5.. is the sum of the infinite numbers. | came up with this formula because we
know,

e Fora = 2, when n kept increasing, the sum of the n value remained the same
and that’'s why 5, = 2. We can say that 5.. = a instead of 5,, = 2 because n can
go up to c@ and on the other hand a is equivalent to 2.

e Fora = 3, when n kept increasing, the sum of the n value remained the same
and that’'s why 5, = 3. We can say that 5.. = a instead of 5,, = 3 because n can
go up to oo and on the other hand a is equivalent to 3.

Thus, 5. =a

In order to test this general statement, | am goingto leta be 4. Soifais 4, then 5_. = 4.

So now | am going to use Microsoft Excel 2010 again to prove this general statement.
The method is shown in the appendix.



1]

2 '

3 | tﬂ:{iL""}“ CAE=E P 1
4 n n!

5| o 1 1

6 1 1.386294 2.386294
7| 2 0.960906 3.347200
g 3 0.444033 3.791233
3| 4 0.153890 3.945123
10 s 0.042667 3.987791
1| 6 0.009858 3.997649
12| 7 0.001952 3.999601
13| 8 0.000338 3.999940
14| 9 0.000052 3.999992
15| 10 0.000007 3.999999
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Now | will graph it so that it is easier to see and check:
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As we can see that the graph is increasing but as n value passes 10, we see that 5,
remains 4. This proves my general term 5_. = a as | predicted that 5. = 4.



Now | will sub different values for both x and a, in the equation
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Here, | will let T,,(a.x) be the sum of the first n terms for various values of a and x. For
example, T;(2,5) be the sum of the first 9 terms when a = 2 and x = 5.

But before we do anything, | am going to change (xIna) to make it look simpler —
(xlna)™
= (Ina*)"™

| am not sure if this is going to work. So | am going to test it using my TI-84 Plus

Letx=3 Letx=3

Leta =2 Leta =2
Letn=2 Letn=2
(xlna)™ (In a*)™

= (3In2)? = (ln2%)?

A 4324077125 A 4324077125

This proves that (xIna)® = (Ina*)”
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After looking at this equation, | think the general term will be T, = a*. Where T, is the
sum of the infinite numbers when n approaches co. The reason behind this is that, we

(1lna)™ (lnag®)™

figured 5. = a when t, = where x = 1. But now, we are using t,, =———. For

example, leta = 2 and x = 2. This is what it should look like —
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Here we can see that a = 4, so therefore the result should be

But since we have define T,,(a,x) as the sum, we should rewrite it as T..(2,2) = 4.

But | have only predicted this equation, in order to test it, | will use Microsoft Excel 2010.
The process is shown in the appendix.

T, (a,x) is the sum of the first n term, for various values of a and x.

T,.(2,2) is the sum of the first n term, when a = 2 and x = 2.



Here, n is the term number or the n** term, x is 2 and a is 2 from my equation,

st L e
mmhwml—*ﬁ

17 |

(9« e« F RS R~ ¥ P = O R S AR

W 08 =~ @ om0 3

o
[ e T

1.386294
0.960906
0.444033
0.1538390
0.042667
0.009858
0.001952
0.000338
0.000052
0.000007
0.000001
0.000000
0.000000
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1
2.386294
3.347200
3.791233
3.945123
3.987791
3.997649
3.999601
3.999%40
3.999992
3.999999
4000000
4000000
4000000
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the equation subbing different values of n, in this case is n is defined as 0 < n < 13.
And T, (a,x) is defined as the sum of the first n*® term. In this case, T..(2,2) = 4,
meaning the n value will keep increasing, but the T,, will increase up to 4 unit, and then

it will remain constant. It won’t go further than 4. | will use a graph and this is explain

more —
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Now, | am going to predict that when a = 3 and x = 2 in the equation T,, =

T..(3,2) = 9.

— o5

A B C
1
2 (In3%)"
3 n - Su=5ni+t,
4 0 1 1
5 1 2.197225 3.197225
6 2 2.413898 5.611122
7 3 1.767959 7.379081
8 4 0.971151 8.350232
9 5 0.426767 8.776999
10 6 0.156284 8.933283
n| 7 0.049056 8.982339
12 8 0.013473 8.995812
13 9 0.003289 8.999101
14 10 0.000723 8.999824
15 11 0.000144 8.995968
16 12 0.000026 8.999995
17 13 0.000004 8.9999499
18 14 0.000001 9.000000
19 15 0.000000 9.000000
20 16 0.000000 9.000000
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So according to my guess, | was totally right. This proves that the general term is
T.(a,x) = a*.

So now | am going to use my calculator to figure that what happens when
a=0a=—2,x=0,x=-2.

(Ine*)™

So, lamgoingtoleta=0,x=2andn =10in t, =
| will use my TI-84 Plus in order to find out the situation. It look like this—

(o)) s ctaty

After | pressed ENTER key, | got this result —

EEE: DOMAIM
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This suggest there is no result when a = 0. The reason behind this is that, when we
LinbE~)) ~{1@!7

Error
logc@s
Ertroar
lntEo
Ertar
punchinlog0orln0 n , we get the same error. As we cannot solve it.
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Now | am going to let a= —2, x = 2 and n = 10 in the equation t,, =
| will use my T1-84 Plus in order to find out the situation. It looks like this —

10
(1n((c-2>200" ¢k
7.2242295¢ 46

So this means, when | use a as a negative number it will show some results. | will check

if the result shown above different from the equation t,, = —"‘lnf;,j_

in
L1l -2020 07 s
7. 2242205 -5

in
Clmbeza) ) o1t
7. 2242205 -5



This means, that when a = 2 it is equal to when a = —2. But what happens when a is a
negative number and x is a odd number. For example, when

(—2)* = (-2)(-2)(-2) = -s8.

(Ine*)™

| willleta =—2, x =3 andn = 10 in the equationt, =
| will again use my TI-84 Plus to find out the result —

Bin((c-2>"0" /2

This is what | get when | hit enter —
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This simple means that you cannot solve a equation when there is a negative number.
For example,
LlnlLg-207)) »0f
Errar
logd -1@3
ln{-1@7

Ertar

Errar
In conclusion, when a is a negative number, x had to be an even number to change the
negative sign to positive sign.

In short, x = 0, a # 0, x can be both positive and negative number, a can also be both
negative and positive number but only when x is an even number.



