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Infinite series are among the most powerful and useful tools that you will
encounter in calculus. They are among the major tools used in analyzing differential
equations, developing methods of numerical analysis, defining new functions, and
estimating behaviour of functions, and much more. The use of infinite series can be
found in a variety of fields, such as electronics engineering, micro-economics,
mathematics, and physics.

In this Mathematical portfolio, the investigation of the sum of infinite sequence,
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t., where: to=1,1t= 1 , b= %1 , 3= 32X s ee- = n!

For a positive integer n, factorial =, written as n!, is the product of all of the
positive integers less than or equal to .
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Furthermore, 0! = 1 (by definition)

This can be proofed with the equation (n — 1)! = =
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The above sequence is called an infinite sequence, because the three dots at the

end of the sequence indicate that the sequence continues indefinitely. However, the
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following sequence 1.7.-.7. ...~ is called a finite sequence because it has a finite

&

number of terms, n. After determine this sequence as an infinite sequence, we should

determine whether or not this sequence is convergent or divergent. This is important
because if this sequence diverges, the general statement would be A=z n — 0,51 — w0,

A convergent series is a series in which the terms decrease in magnitude rapidly and for
which the sum of the first several terms is not too different from the sum of all of the
terms of the series. The following is an example of a divergent series.
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Thus, there is no general statement to represent the infinite sum of this
sequence. In order to detect whether the given sequence is a convergent sequence or
not, there are 3 tests that can prove it. The ratio test is the most comprehensive, and
useful test.
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a) Isless than 1, the sequence converges.
b) Is greater than 1, the sequence diverges
c) Is equal to 1, the test fails to give conclusive information

We can use the ratio test to determine whether or not our sequence is converging.
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Since the 0 is less than 1, the series converges. This determines that the sum of this
series is a real number.

To determine the general statement that represents the infinite sum of this general
sequence, we must start step by step: (all of the answers below will be corrected to 6
decimal places)
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First, we have to calculate the sum 5,, of the first  terms of the sequence for

(in2) (In2)? (n2)E
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0=n=10 forwherex=1l,anda=2:1,
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Relation between 5, and n (x=1and a=2)

h)

1.000000
1.693147
1.933374
1.988878
1.998496
1.999829
1.999983
1.999999
2.000000
2.000000
2.000000
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By using Microsoft Excel, it is possible to graph the relation between 5, and .
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I noticed that from this plot, the 5, value is increasing when the = value increases,
however, the graph does not go beyond v = 2. We can say that there is an asymptote
at v = 2. Furthermore, it is noticeable that as n — o=, the values of 5,, = 2, which in this
case is the a value. Even though on the table, the data shows that when n=10,

5, = 2.000000. This does not mean that the graph is intersecting the asymptote,

however, this occurs because we can only take 6 decimal places. When | expand the
number, it shows that 5,, =1.9999999995. This can be applied to parts of this investigation.

This case can be further proved by inserting

x = l,anda=3:l,"‘l

I ” v
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Relation between 5, and n (x=1,and a = 3)

n x a 5,

0 1 3 1.000000
1 1 3 2.098612
2 1 3 2.702087
3 1 3 2.923082
4 1 3 2.983779
5 1 3 2.997115
6 1 3 2.999557
7 1 3 2.999940
8 1 3 2.999993
9 1 3 2.999999
10 1 3 3.000000

Again, let’s graph the relation between 5,, and .
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Relations between Sn and n
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This plot further proves that the 5,, value is increasing while the = value is
also increasing. This time, the graph would not go beyond v = 3. We can say that the
asymptote of this graph is v = 3. The observation that | made in the first case can be
validated by the fact that as n — o=, the values of 5,, — a , in this case itis 3.

Right now, | will calculate the sum 5,,, when x = 1, and different values of a. The
3 different values of a is 15, 0.1, 0.5. During this process, it is clear that the
a value cannot be a negative value or zero. This is because ¢ to the power of any
number will give you a positive number greater than 0. In another word, the domain of a
is for the positive numbers only. We cannot take the logarithm of a negative number or

zero.

Relation between 5, and n (x =1,and a = 15)

n x a 8,

0 1 15 1.000000
1 1 15 3.708050
2 1 15 7.374818
3 1 15 10.684749
4 1 15 12.925613
5 1 15 14.139288
6 1 15 14.687070
7 1 15 14.898987
8 1 15 14.970723
9 1 15 14.992307
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10 [ 1 | 15 | 14.998153

Relations between Sn and n
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From this set of data, | can see that the 5., value is approaching 15, as the n
value approaches 10. The asymptote in this plot is v = 15. The line cannot cross or
intersect with v = 15.

Relation between 5, and n (x =1,and a = 0.5)

n x a 5,

0 1 0.5 1.000000
1 1 0.5 0.306853
2 1 0.5 0.547079
3 1 0.5 0.491575
4 1 0.5 0.501193
5 1 0.5 0.499860
6 1 0.5 0.500014
7 1 0.5 0.499999
8 1 0.5 0.500000
9 1 0.5 0.500000
10 1 0.5 0.500000
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Relations between Sn and n
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From this set of data, | can see that instead of increasing exponential until v = a,
the relation between Relations betweens,, and n fluctuates up and down, and then it
reaches v = a. However, my observation still stands as when as = — o, the values of
5, — a. In this graph, | noticed something that has not happened with
a= positive number, the graph fluctuates up and down. | observe that when
n is an odd number, the graph dips below the asymptote at v = 0.5. This is due to the
fact that Ina, (a < 1), the answer is negative. When the n value is an even number, the

negative values cancel each other out, thus producing a relatively larger number.
However, when the n value is an odd number, the power of Ina, (a < 1) would be

relatively low, and often a negative number. Thus, the graph would fall below the
asymptote when a < 0, for n is an odd number. The graph will fluctuates above and

below the asymptote, but never intersecting the asymptote.

Relation between 5, and n (x =1,and a = 0.1)

n x a 5,

0 1 0.1 1
1 1 0.1 -1.302585093
2 1 0.1 1.348363962
3 1 0.1 -0.68631463
4 1 0.1 0.484940519
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5 1 0.1 -0.05444241
6 1 0.1 0.152553438
7 1 0.1 0.084464073
8 1 0.1 0.104061768
9 1 0.1 0.099047839
10 1 0.1 0.100202339
Relations between Sn and n
1.500000
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0.500000
c
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This set of data sees a lot more fluctuation than the last set of data when
o = 0.5. This is also the first time that 5,, is less than 0, when »n = 1,3,5. This is because

that the(In{a < 0)" produce a number that is too small. The graph would continue to
fluctuate until = = 10. Even though this graph has a big fluctuation, it can still take the
observation that as n — w2, the values of 5, — a, which is 0.5 in this case.

After investigating the cases above, it is certain that when x = 1, the general
statement that represents the infinite sum of the general sequence is as n — =, the
values of 5,, — a. This can be written as the following:
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Ina)™
5, = E (ina) —a
- n!

n=g

Right now, we will expand this investigation to determine the sum of the infinite
sequence
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We can define that T, (@, x)as the sum of the first n terms, for various values of a and x.

Let a =2. Calculate T;(2,x) for various positive values of x.

Using technology, plot the relation between T;(2,x) and x. Describe the relationship.

Relation between 5, and n (a=2)
x T,(2,x) flx)=2%

0.01 1.006956 1.006956

0.1 1.071773 1.071773

0.25 1.189207 1.189207

0.5 1.414214 1.414214

1 2.000000 2.000000

1.5 2.828427 2.828427

2 3.999992 4.000000

25 5.656775 5.656854

3 7.999488 8.000000

4 15.990193 16.000000

Relation between x and 7T+(2,x)
18.000000
16.000000
14.000000
12.000000
310.000000
)
& 8.000000
6.000000
4.000000
2.000000
0.000000
0 0.5 1 1.5 2 25 3 35 a a5
X values

From this set of data, | can see that this graph resembles an exponential function :
flx) = a*. The function is increasing at an exponential rate. As the x values increases,
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the values of T9(2,x)would also increase as a result. Thus we can say that

N g XImE (xina)” e n (xina)®
fla)=1 1 2! 5

takes on the base of 2. This is because in part 1 of this investigation, we have came to
realize that as n — w2, the values of 5,, = a. This can be written as the following.

By looking at the graph, we can see this graph

Asn—soo,x =1, Sn—al

Therefore,as Asn — 0 ,x is unkonw, then Sn — a”.
It can be praoven by the falalwing:

xlna)™ Ina® ™
(xlna)" _ (Ina*) .

(lna')”
| | (by using the Power laws of Logarithm),x = 1, |
!l n! 1!

— al, thus,

Sn is approaching to a value that is the power of a, in this case, it would be a.

This can be further expanded with this investigation.

(xlna)”® (Ina®)" (In2*)"
= ,x = unknown value,a = 2
1! 1! mnl

Snis approaching to a value that is the power of 2,in this case, it would be 27,

Sn — 2%, thus,

By sketching the function f(x) = 2%, | can examine that the function resemble our own
plot. Thus, | notice that as the x value varies, the values of T;(2,x) always approach the
values of f(x} = 2. Further differences will be explained in the next example.

Relation between 5,, and = (a=13)

x Ty (3.x) flx) =3"
0.01 1.011047 1.011047
0.10 1.116123 1.116123
0.25 1.316074 1.316074
0.50 1.732051 1.732051
1.00 2.999999 3.000000
1.50 5.196105 5.196152
2.00 8.999101 9.000000
2.50 15.579560 15.588457
3.00 26.941276 27.000000
4.00 79.803290 81.000000
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In this example, | can observe that this relationship resembles the function fi{x) =a*.
The only difference between this example and the example above would be the

a values in the function. As | have mentioned above, as the x values increases, the

values of T9(3,x) would also increase at an exponential rate. Therefore, based on my

observations above, this relation should resemble that of the function.

y =a*, a=3,x = unknown value, T, (3,x)should approach y = 3%,

After plotting the points for the function v = 3, | noticed that most of the points are very

similar between both graphs. However, | did remark that when

¥ =4,T;(3,x) = 79.803290, which is not accurate with the function v = 3*. To enhance

that this is not an error, | calculated, that when

x = 5,T(3,x) = 230.019331, which is different from 3° = 243.000000. The reason
behind this will be further discussed in the final conclusion coming up.

General Statement

As the = value approaches =, the values of T, (a.x) will approach a*. This relation can

be modeled by the following:

n=g

= xlna)™
T (a,x) =Z !% a*
- 1!

The below domain restrictions can apply to this general statement

x #F 0, a>0a=+1,

1 = positive integers




o = 0 is a restriction because we cannot take the common logarithm of a negative
number or 0.

x=0, a= 1, .Thisis because when x = 0 or a = 1, our sequence looks like this:

_©

t

"
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When n = 0, our sequence is t, = T , according to our math textbook, (Patrick 198).

a® =1,a = 0.and 0° = 0,n = 0. By taking 0 to the power of 0, we will not

As | have mentioned above, even though the 5, value can be very close to a*, there are
other times when the 5, value can be off. As noticed in the example, when

¥ =4,T;(3,x) = 79.803290, which is not accurate with the function v = 3*. This is
because | am only taking the 9" term of this sequence. If | take T, (3,4), the answer
would be closer to v = 3*. This pattern can be noted that as the @ and x — o, the

xina)"

number of terms that required for £, &

—— would also increase. This can be further

(xina)"

mentioned that as the a and x — 0, the number of terms that required for 27—,

will increase as well.

This general statement is an example of the Maclaurin series. It is a series that
expresses a function in terms of an infinite power series whose nth coefficient is the nth
derivative of f(x), evaluated at x = 0, divided by n!. The Maclaurin series The Maclaurin

Series can be written as this :
"oy () (g
f(ljzf({))_fli{))l—ul- _..._f ( :I

21 1!

l“ ——n

There are also some common functions of the Maclaurin series. The expansion of a*by
the Maclaurin series is written as followed:
(xlna)' (xlna)® (xlna)® (xlna)”

a* =1 o, a=0
1 2! 3! !

£ xe it
(xlna)

This validates that my general statement - T,,(a,x) = X7_,———— — a” is true.
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Here are more values of a and x to test the validity of the general statement.

n a x Ty(a x) y=0.57¢
0.000000 0.500000 -2.000000 1.000000
1.000000 0.500000 -2.000000 2.386294
2.000000 0.500000 -2.000000 3.347200
3.000000 0.500000 -2.000000 3.791233
4.000000 0.500000 -2.000000 3.945123
5.000000 0.500000 -2.000000 3.987791
6.000000 0.500000 -2.000000 3.997649
7.000000 0.500000 -2.000000 3.999601
8.000000 0.500000 -2.000000 3.999940
9.000000 0.500000 -2.000000 3.999992
10.000000 0.500000 -2.000000 SLLLEERE)
11.000000 0.500000 -2.000000 4.000000

12.000000 0.500000 -2.000000 4.000000 | 4.000000

n a x Ty(a x) y=2705
0.000000 2.000000 -0.500000 1.000000
1.000000 2.000000 -0.500000 0.653426
2.000000 2.000000 -0.500000 0.713483
3.000000 2.000000 -0.500000 0.706545
4.000000 2.000000 -0.500000 0.707146
5.000000 2.000000 -0.500000 0.707104
6.000000 2.000000 -0.500000 0.707107
7.000000 2.000000 -0.500000 0.707107
8.000000 2.000000 -0.500000 0.707107

9.000000 2.000000 -0.500000 0.707107 | 0.707107

From the last two tables, we witness that even though the x value is negative, it still

does not change the general statement.

n a x Ty(a, x) y=0.1°
0.000000 0.100000 2.000000 1.000000
1.000000 0.100000 2.000000 -3.605170
2.000000 0.100000 2.000000 6.998626
3.000000 0.100000 2.000000 -9.278803
4.000000 0.100000 2.000000 9.461280
5.000000 0.100000 2.000000 -7.798974




6.000000 0.100000 2.000000 5.448760
7.000000 0.100000 2.000000 -3.266678
8.000000 0.100000 2.000000 1.750331
9.000000 0.100000 2.000000 -0.816800
10.000000 0.100000 2.000000 0.365408
11.000000 0.100000 2.000000 -0.129526
12.000000 0.100000 2.000000 0.060412
13.000000 0.100000 2.000000 -0.006872
14.000000 0.100000 2.000000 0.015260
15.000000 0.100000 2.000000 0.008465
16.000000 0.100000 2.000000 0.010421
17.000000 0.100000 2.000000 0.009891
18.000000 0.100000 2.000000 0.010027
19.000000 0.100000 2.000000 0.009994
20.000000 0.100000 2.000000 0.010001
21.000000 0.100000 2.000000 0.010000
22.000000 0.100000 2.000000 0.010000 | 0.010000




