

Mathematics Standard Level Portfolio by Emanuel Hausmann

Content

Task 1: Show that six parallelograms are formed when a fourth transversal is added to Figure 2. List all parallelograms, using set notation	3
Task 2: Repeat the process with 5, 6 and 7 transversal s. Show your results in a table. Use technology to find a relation between the number of transversals and the number of parallelograms. Develop a general statement, and test its validity.	4
Task 3: Next consider the number of parallelograms formed by three horizontal parallel lines intersected by parallel transversals. Develop and test another general statement for this case.	
Task 4: Now extend your results to m horizontal parallel lines intersected by n parallel transversals	3
Scope and Limitations:10	6

Parallels and Parallelograms

In this portfolio task I considered the number of parallelograms formed by intersecting parallel lines. The general statement for the overall pattern is $C = \frac{(h-1)(t-1)ht}{4}$, $(h, t \in \mathbb{N})$ where C is the count, h the number of horizontals and t the number of transversals. In the following I'll explain how I arrived at this generalization.

Figure 1 below shows a pair of horizontal parallel lines and a pair of parallel transversals. One parallelogram (A_1) is formed.

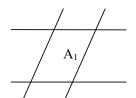


Figure 1

A third parallel transversal is added to the diagram as shown in Figure 2. Three parallelograms are formed: A_1 , A_2 and $A_1 \square A_2$.

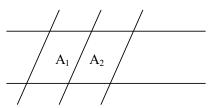


Figure 2

Task 1: Show that six parallelograms are formed when a fourth transversal is added to Figure 2. List all parallelograms, using set notation.

If a fourth transversal is added to Figure 2, six parallelograms are formed like shown in Figure 3. The six parallelograms are: A_1 , A_2 , A_3 , $A_1 \square A_2$, $A_2 \square A_3$ and $A_1 \square A_2 \square A_3$.



Task 2: Repeat the process with 5, 6 and 7 transversals. Show your results in a table. Use technology to find a relation between the number of transversals and the number of parallelograms. Develop a general statement, and test its validity.

Figure 4 shows that ten parallelograms are formed if a further transversal is added to figure 3 These parallelograms are: A_1 , A_2 , A_3 , A_4 , $A_1 \square A_2$, $A_2 \square A_3$, $A_3 \square A_4$, $A_1 \square A_2 \square A_3$, $A_4 \square A_4$ and $A_1 \square A_2 \square A_3 \square A_4$.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
By looking at Figure 5 we can see that 15 parallelograms are formed if the diagram has 6 transversals: The 15 parallelograms are: $A_1, A_2, A_3, A_4, A_5,$ $A_1 \Box A_2, A_2 \Box A_3, A_3 \Box A_4, A_4 \Box A_5,$ $A_1 \Box A_2 \Box A_3, A_2 \Box A_3 \Box A_4, A_3 \Box A_4 \Box A_5,$ $A_1 \Box A_2 \Box A_3 \Box A_4, A_2 \Box A_3 \Box A_4 \Box A_5$ and $A_1 \Box A_2 \Box A_3 \Box A_4, A_2 \Box A_3 \Box A_4 \Box A_5.$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
At 7 th transversal is added to the diagram as shown in Figure 5. 21 Parallelograms are formed $A_1, A_2, A_3, A_4, A_5, A_6,$ $A_1 \square A_2, A_2 \square A_3, A_3 \square A_4, A_4 \square A_5, A_5 \square A_6,$ $A_1 \square A_2 \square A_3, A_2 \square A_3 \square A_4, A_3 \square A_4 \square A_5, A_4 \square A_5 \square A_6,$ $A_1 \square A_2 \square A_3 \square A_4, A_2 \square A_3 \square A_4 \square A_5, A_3 \square A_4 \square A_5 \square A_6,$ $A_1 \square A_2 \square A_3 \square A_4, A_2 \square A_3 \square A_4 \square A_5, A_3 \square A_4 \square A_5 \square A_6,$ $A_1 \square A_2 \square A_3 \square A_4 \square A_5, A_2 \square A_3 \square A_4 \square A_5 \square A_6$ and $A_1 \square A_2 \square A_3 \square A_4 \square A_5 \square A_6.$
A_1 A_2 A_3 A_4 A_5 A_6 Figure 6

Task 3: Next consider the number of parallelograms formed by three horizontal parallel lines intersected by parallel transversals. Develop and test another general statement for this case.

m	n	a_n	
2	1	0 —	
2	2	1	+1
2	3	3>	
2	4	6	+3 +4
2	5	10	>+5
2	6	15	73
2	7	21	+6

Figure 7

Legend to Figure 7:

m = number of horizontal lines

 $n = number \ of \ parallel \ transversals$

 $a_n = number of parallelograms formed$

Figure 7 shows that there must always be added 1 to the previous term in order to find out the new term u_n . Because the gaps between the numbers are always one smaller than n, it was found out that the formula must include (n-1). In order to find out u_n , (n-1) must be added to u, which is one smaller than u_n .

m	n	a_n	S_n
2	1	0	0
2	2	1	1
2	3	3	4
2	4	6	10
2	5	10	20
2	6	15	35
2	7	21	56

Figure 8

Legend to Figure 8:

m = number of horizontal lines

n = number of parallel transversals

 $a_n = number \ of \ parallelograms \ formed$

 $S_n = sum \ of \ paralllograms \ formed$

Note that if we define u_6 as the set of all parallelograms that can be formed using six traversals and one parallelogram and u_7 as the set of all parallelograms that can be formed using seven traversals, the following is the case:

$$u_7 = \ u_6 \cup \{A_6, A_5 \cup A_6, A_4 \cup A_5 \cup A_6, A_3 \cup A_4 \cup A_5 \cup A_6, A_2 \cup A_3 \cup A_4 \cup A_5 \cup A_6, A_1 \cup A_2 \cup A_3 \cup A_4 \cup A_5 \cup A_6\} = 15 + 6 = 21$$

One can derive the following general formula for the set of all fields which can be formed using two horizontal lines and n transversals:

$$S_n = S_{n-1} \cup \{A_n, A_{n-1} \cup A_n, ..., A_1 \cup A_2 \cup ... \cup A_{n-1} \cup A_n\} \text{ with } S_1 = \{\} \text{ and where } n \in \mathbb{N} \setminus \{0\}$$

The number of elements in S_n which will be called u_n can be expressed as follows:

$$u_n = u_{n-1} + n - 1$$
 with $u_1 = 0$ and where $n \in \mathbb{N} \setminus \{0\}$

This can be simplified:

$$\begin{split} u &= 2 - 1 = 1 \\ u_3 &= 2 - 1 + 3 - 1 = 1 + 2 \\ u_4 &= 2 - 1 + 3 - 1 + 4 - 1 = 1 + 2 + 3 \\ u_n &= 2 - 1 + 3 - 1 + 4 - 1 + \dots + n - 2 + n - 1 \\ &= 1 + 2 + 3 + \dots + n - 3 + n - 2 + n - 1 \\ &= \sum_{i=1}^{n-1} i = \frac{1}{2} * (n-1) * ((n-1) + 1) \\ &= \frac{1}{2} * (n-1) * n \end{split}$$

The general statement therefore is $u_n = \frac{1}{2} n (n-1)$. u_n is called the nth term or the general term of the sequence.

In order to find a relationship between the number of transversals and the number of parallelograms I used the computer programme Windows Office Excel 2007 and proved my general statement like shown in Figure 9 and Figure 10.

n	a_n
0	0
1	0
3	1
	3
4	6
5	10
6	15
7	21
8	28
9	36
10	45
11	55
12	66
13	78
14	91
15	105

Figure 9

Legend to Figure 9:

 $n = number\ of\ parallel\ transversals$

 $a_n = number \ of \ parallelograms \ formed$

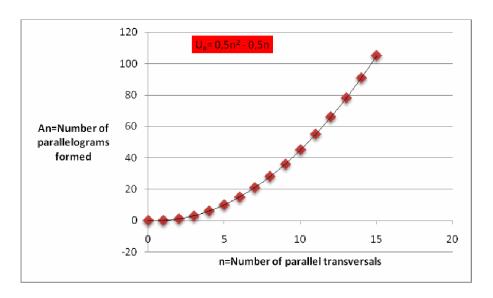


Figure 10

To test the validity of the general statement it can be shown what happens if we have 9 transversals. By using the general term formula we would get 36 parallelograms:

General term: $u_n = \frac{1}{2} n (n-1)$

Number of transversals n = 9

Therefore: $u_9 = \frac{1}{2} 9 (9 - 1) = 4.5 (8) = 36$

To back up the general statement Figure 11 shows the 36 parallelograms:

$$A_1, A_2, A_3, A_4, A_5, A_6, A_7, A_8,$$

$$A_1 \square A_2, A_2 \square A_3, A_3 \square A_4, A_4 \square A_5, A_5 \square A_6, A_6 \square A_7, A_7 \square A_8,$$

$$A_1 \; \Box \; A_2 \; \Box \; A_3, \; A_2 \; \Box \; A_3 \; \Box \; A_4, \; A_3 \; \Box \; A_4 \; \Box \; A_5, \; A_4 \; \Box \; A_5 \; \Box \; A_6 \; , \; A_5 \; \Box \; A_6 \; \Box \; A_7 \; , \; A_6 \; \Box \; A_7 \; \Box \; A_8 \; ,$$

$$A_1 \ \Box \ A_2 \ \Box \ A_3 \ \Box \ A_4, \ A_2 \ \Box \ A_3 \ \Box \ A_4 \ \Box \ A_5, \ A_3 \ \Box \ A_4 \ \Box \ A_5 \ \Box \ A_6, \ A_4 \ \Box \ A_5 \ \Box \ A_6 \ \Box \ A_7, \ A_5 \ \Box \ A_6$$

$$\Box A_7 \Box A_8$$
,

$$A_1 \ \square \ A_2 \ \square \ A_3 \ \square \ A_4 \ \square \ A_5, \ A_2 \ \square \ A_3 \ \square \ A_4 \ \square \ A_5 \ \square \ A_6, \ A_3 \ \square \ A_4 \ \square \ A_5 \ \square \ A_6 \ \square \ A_7, \ A_4 \ \square \ A_5 \ \square \ A_6$$

$$\Box A_7 \Box A_8$$
,

$$A_1 \ \Box \ A_2 \ \Box \ A_3 \ \Box \ A_4 \ \Box \ A_5 \ \Box \ A_6, \ A_2 \ \Box \ A_3 \ \Box \ A_4 \ \Box \ A_5 \ \Box \ A_6 \ \Box \ A_7, A_3 \ \Box \ A_4 \ \Box \ A_5 \ \Box \ A_6 \ \Box \ A_7 \ \Box \ A_8,$$

$$A_1 \ \Box \ A_2 \ \Box \ A_3 \ \Box \ A_4 \ \Box \ A_5 \ \Box \ A_6 \ \Box \ A_7, \ A_2 \ \Box \ A_3 \ \Box \ A_4 \ \Box \ A_5 \ \Box \ A_6 \ \Box \ A_7 \ \Box \ A_8 \ and$$

$$A_1 \ \Box \ A_2 \ \Box \ A_3 \ \Box \ A_4 \ \Box \ A_5 \ \Box \ A_6 \ \Box \ A_7 \ \Box \ A_8.$$

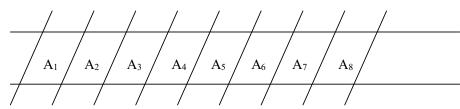


Figure 11

To verify the general statement Figure 12 illustrates how many parallelograms are formed if we have 11 transversals and a pair of horizontal lines.

General term: $u_n = \frac{1}{2} n (n-1)$

Number of transversals n = 11

Therefore:
$$u_{11} = \frac{1}{2} 11 (11 - 1) = 5.5 (10) = 55$$

The so formed parallelograms are: A_1 , A_2 , A_3 , A_4 , A_5 , A_6 , A_7 , A_8 , A_9 , A_{10} ,

$$A_1 \ \Box \ A_2, A_2 \ \Box \ A_3, A_3 \ \Box \ A_4, A_4 \ \Box \ A_5, A_5 \ \Box \ A_6, A_6 \ \Box \ A_7, A_7 \ \Box \ A_8, A_8 \ \Box \ A_9, A_9 \ \Box \ A_{10}, A_{10}, A_{10} \ \Box \ A$$

$$A_1 \ \Box \ A_2 \ \Box \ A_3, \ A_2 \ \Box \ A_3 \ \Box \ A_4, \ A_3 \ \Box \ A_4 \ \Box \ A_5, A_4 \ \Box \ A_5 \ \Box \ A_6 \ , A_5 \ \Box \ A_6 \ \Box \ A_7 \ , A_6 \ \Box \ A_7 \ \Box \ A_8 \ ,$$

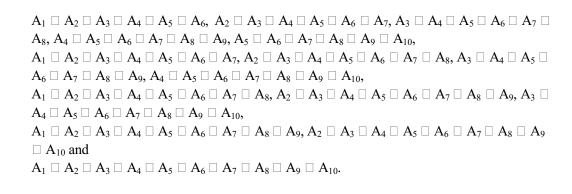
 $A_7 \square A_8 \square A_9$, $A_8 \square A_9 \square A_{10}$,

$$A_1 \ \Box \ A_2 \ \Box \ A_3 \ \Box \ A_4, \ A_2 \ \Box \ A_3 \ \Box \ A_4 \ \Box \ A_5, \ A_3 \ \Box \ A_4 \ \Box \ A_5, \ A_4 \ \Box \ A_5 \ \Box \ A_6, \ A_4 \ \Box \ A_5 \ \Box \ A_6 \ \Box \ A_7, \ A_5 \ \Box \ A_6$$

$$\square A_7 \square A_8$$
, $A_6 \square A_7 \square A_8 \square A_9$, $A_7 \square A_8 \square A_9 \square A_{10}$,

$$A_1 \ \Box \ A_2 \ \Box \ A_3 \ \Box \ A_4 \ \Box \ A_5, \ A_2 \ \Box \ A_3 \ \Box \ A_4 \ \Box \ A_5 \ \Box \ A_6, \ A_3 \ \Box \ A_4 \ \Box \ A_5 \ \Box \ A_6 \ \Box \ A_7, \ A_4 \ \Box \ A_5 \ \Box \ A_6$$

$$\square$$
 A₇ \square A₈, A₅ \square A₆ \square A₇ \square A₈ \square A₉, A₆ \square A₇ \square A₈ \square A₉ \square A₁₀,



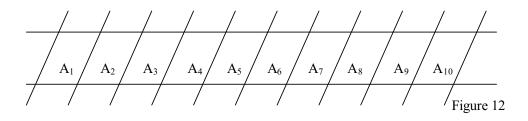
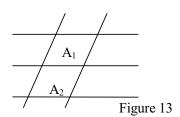


Figure 13 below shows 3 horizontal parallel lines and a pair of parallel transversals. Three parallelograms are formed: A_1 , A_2 and $A_1 \square A_2$.

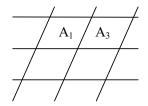


If a third parallel transversal is added to the diagram as shown in Figure 13, nine parallelograms are formed. These parallelograms are:

$$A_1, A_2, A_3, A_4,$$

$$A_1 \ \Box \ A_2, A_3 \ \Box \ A_4, A_1 \ \Box \ A_3, A_2 \ \Box \ A_4$$
 and

$$A_1 \square A_2 \square A_3 \square A_4$$



 A_2 A_4

Figure 14

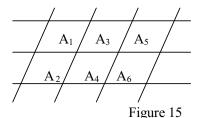
A further transversal is added to Figure 14. Now we have four transversals and nine parallelograms are created. The nine parallelograms are:

 $A_1, A_2, A_3, A_4, A_5, A_6,$

$$A_1 \ \Box \ A_2, A_3 \ \Box \ A_4, A_5 \ \Box \ A_6, A_1 \ \Box \ A_3, A_3 \ \Box \ A_5, A_2 \ \Box \ A_4, A_4 \ \Box \ A_6,$$

$$A_1 \square A_2 \square A_3 \square A_4, A_3 \square A_4 \square A_5 \square A_6$$
 and

$$A_1 \square A_2 \square A_3 \square A_4 \square A_5 \square A_6$$
.



If we have five transversals 30 parallelograms are formed like shown in Figure 16. They are:

 $A_1, A_2, A_3, A_4, A_5, A_6, A_7, A_8,$

$$A_1 \ \Box \ A_2, A_3 \ \Box \ A_4, A_5 \ \Box \ A_6, A_7 \ \Box \ A_8, A_1 \ \Box \ A_3, A_3 \ \Box \ A_5, A_5 \ \Box \ A_7, A_2 \ \Box \ A_4, A_4 \ \Box \ A_6, A_6 \ \Box \ A_8,$$

$$A_1 \square A_3 \square A_5$$
, $A_3 \square A_5 \square A_7$, $A_2 \square A_4 \square A_6$, $A_4 \square A_6 \square A_8$,

$$A_1 \ \Box \ A_2 \ \Box \ A_3 \ \Box \ A_4, \ A_3 \ \Box \ A_4 \ \Box \ A_5 \ \Box \ A_6, \ A_5 \ \Box \ A_6 \ \Box \ A_7 \ \Box \ A_8, \ A_1 \ \Box \ A_3 \ \Box \ A_5 \ \Box \ A_7, \ A_2 \ \Box \ A_4$$

$$\square A_6 \square A_8$$
,

$$A_1 \ \Box \ A_2 \ \Box \ A_3 \ \Box \ A_4 \ \Box \ A_5 \ \Box \ A_6, A_3 \ \Box \ A_4 \ \Box \ A_5 \ \Box \ A_6 \ \Box \ A_7 \ \Box \ A_8 \, and$$

$$A_1 \square A_2 \square A_3 \square A_4 \square A_5 \square A_6 \square A_7 \square A_8$$
.

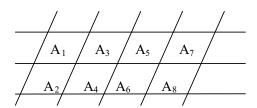


Figure 16

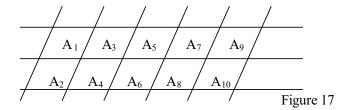
If we have six transversals 45 parallelograms are formed like shown in Figure 17. They are:

 A_1 , A_2 , A_3 , A_4 , A_5 , A_6 , A_7 , A_8 , A_9 , A_{10} ,

$$\begin{array}{c} A_1 \ \Box \ A_2, A_3 \ \Box \ A_4, A_5 \ \Box \ A_6, A_7 \ \Box \ A_8, A_9 \ \Box \ A_{10}, A_1 \ \Box \ A_3, A_3 \ \Box \ A_5, A_5 \ \Box \ A_7, A_7 \ \Box \ A_9, \ A_2 \ \Box \\ A_4, A_4 \ \Box \ A_6, A_6 \ \Box \ A_8, A_8 \ \Box \ A_{10}, \end{array}$$

$$A_1 \ \Box \ A_3 \ \Box \ A_5, A_3 \ \Box \ A_5 \ \Box \ A_7, \ A_5 \ \Box \ A_7 \ \Box \ A_9, \ A_2 \ \Box \ A_4 \ \Box \ A_6, A_4 \ \Box \ A_6 \ \Box \ A_8, \ A_6 \ \Box \ A_8 \ \Box \ A_{10}, \ A_{$$

$$A_1 \ \Box \ A_2 \ \Box \ A_3 \ \Box \ A_4, \ A_3 \ \Box \ A_4 \ \Box \ A_5 \ \Box \ A_6, \ A_5 \ \Box \ A_6 \ \Box \ A_7 \ \Box \ A_8, \ A_7 \ \Box \ A_8 \ \Box \ A_9 \ \Box \ A_{10},$$



If we have six transversals 63 parallelograms are formed like shown in Figure 18. They are: A_1 , A_2 , A_3 , A_4 , A_5 , A_6 , A_7 , A_8 , A_9 , A_{10} , A_{11} , A_{12} ,

 $A_1 \ \square \ A_2, A_3 \ \square \ A_4, A_5 \ \square \ A_6, A_7 \ \square \ A_8, A_9 \ \square \ A_{10}, A_{11} \ \square \ A_{12}, A_1 \ \square \ A_3, A_3 \ \square \ A_5, A_5 \ \square \ A_7, A_7$

 $\square \ A_9, \ A_9 \ \square \ A_{11}, A_2 \ \square \ A_4, A_4 \ \square \ A_6, A_6 \ \square \ A_8, A_8 \ \square \ A_{10}, A_{10} \ \square \ A_{12},$

 $A_1 \ \Box \ A_3 \ \Box \ A_5, \ A_3 \ \Box \ A_7, \ A_5 \ \Box \ A_7 \ \Box \ A_9, \ A_7 \ \Box \ A_9 \ \Box \ A_{11}, \ A_2 \ \Box \ A_4 \ \Box \ A_6, \ A_4 \ \Box \ A_6 \ \Box \ A_8,$

 $A_6 \ \Box \ A_8 \ \Box \ A_{10}, A_8 \ \Box \ A_{10} \ \Box \ A_{12},$

 $A_1 \ \square \ A_2 \ \square \ A_3 \ \square \ A_4, A_3 \ \square \ A_4 \ \square \ A_5 \ \square \ A_6, A_5 \ \square \ A_6 \ \square \ A_7 \ \square \ A_8, A_7 \ \square \ A_8 \ \square \ A_9 \ \square \ A_{10}, A_9 \ \square \ A_{10}$

 $\square A_{11} \square A_{12}, A_1 \square A_3 \square A_5 \square A_7, A_3 \square A_5 \square A_7 \square A_9, A_5 \square A_7 \square A_9 \square A_{11}, A_2 \square A_4 \square A_6 \square A_7 \square A_$

 $A_8, A_4 \square A_6 \square A_8 \square A_{10}, A_6 \square A_8 \square A_{10} \square A_{12},$

 $A_1 \ \Box \ A_3 \ \Box \ A_5 \ \Box \ A_7 \ \Box \ A_9 \ \Box \ A_{11}, \ A_2 \ \Box \ A_4 \ \Box \ A_6 \ \Box \ A_8 \ \Box \ A_{10}, \ A_4 \ \Box \ A_6 \ \Box$

 $A_8 \square A_{10} \square A_{12}$,

 $A_1 \ \Box \ A_3 \ \Box \ A_5 \ \Box \ A_7 \ \Box \ A_9 \ \Box \ A_{11}, \ A_2 \ \Box \ A_4 \ \Box \ A_6 \ \Box \ A_8 \ \Box \ A_{10} \ \Box \ A_{12}, \ A_1 \ \Box \ A_2 \ \Box \ A_3 \ \Box \ A_4 \ \Box \ A_5$

 $\ \square \ A_6, A_3 \ \square \ A_4 \ \square \ A_5 \ \square \ A_6 \ \square \ A_7 \ \square \ A_8, A_5 \ \square \ A_6 \ \square \ A_7 \ \square \ A_8 \ \square \ A_9 \ \square \ A_{10}, A_7 \ \square \ A_8 \ \square \ A_9 \ \square \ A_{10}$

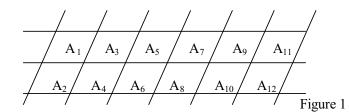
 $\Box A_{11}\Box A_{12}$,

 $A_1 \ \Box \ A_2 \ \Box \ A_3 \ \Box \ A_4 \ \Box \ A_5 \ \Box \ A_6 \ \Box \ A_7 \ \Box \ A_8, A_3 \ \Box \ A_4 \ \Box \ A_5 \ \Box \ A_6 \ \Box \ A_7 \ \Box \ A_8 \ \Box \ A_9 \ \Box \ A_{10}, A_5 \ \Box \ A_{10}, A_{10} \ \Box \ A_{10}, A_{1$

 $A_6 \ \square \ A_7 \ \square \ A_8 \ \square \ A_9 \ \square \ A_{10} \ \square \ A_{11} \ \square \ A_{12}, \ A_1 \ \square \ A_2 \ \square \ A_3 \ \square \ A_4 \ \square \ A_5 \ \square \ A_6 \ \square \ A_7 \ \square \ A_8 \ \square \ A_9 \ \square$

 $A_{10}, A_3 \ \Box \ A_4 \ \Box \ A_5 \ \Box \ A_6 \ \Box \ A_7 \ \Box \ A_8 \ \Box \ A_9 \ \Box \ A_{10} \ \Box \ A_{11} \ \Box \ A_{12} \ \ \text{and} \ A_1 \ \Box \ A_2 \ \Box \ A_3 \ \Box \ A_4 \ \Box \ A_5 \ \Box$

 $A_6 \ \Box \ A_7 \ \Box \ A_8 \ \Box \ A_9 \ \Box \ A_{10} \ \Box \ A_{11} \ \Box \ A_{12}.$



m	n	a	
****	**	a_n	
3	1	0 ~	
3	2	3	+3+6
3	3	9>	
3	4	18	+9+12
3	5	30	> ₊₁₅
3	6	45	5
3	7	63	+18

Figure 19

Legend to Figure 19: m = number of horizontal linesn = number of parallel transversals

 $a_n = number of parallelograms formed$

By looking at Figure 16 I realized that there are always gaps by 3 in order to get the next u: 3,6,9,12,15,18...

All these gaps are always three times bigger than n. Therefore: $(n-1) \times 3$ In order to find out u_n we have to add $(n-1) \times 3$ to u_{n-1} . This is called a dependent variable because we have to know u to be able to work out u_n .

To get the new general statement for the number of parallelograms formed by three horizontal parallel lines intersected by parallel transversals I used the statement developed for the relationship between the number of transversals and the number of parallelograms and multiplied it by 3 becasue we have got three horizontals.

Now we have
$$u_n = u_{n-1} + (n-1) \times 3$$
.

To test my general statement for the number of parallelograms formed by three horizontal parallel lines intersected by parallel transversals I give two examples:

Example 1:

General statement:
$$u_n = u_{n-1} + (n-1) \times 3$$

Number of transversals: n = 5

Figure 16 underlines that my example is right.

Example 2:

General statement:
$$u_n = u_{n-1} + (n-1) \times 3$$

Number of transversals: n = 7

$$u_7 = u_{7-1} + (7-1) \times 3$$
$$= u_6 + (6) \times 3$$
$$= 45 + 18$$
$$= 63$$

Looking at Figure 18 the correctness of example 2 can be seen.

Task 4: Now extend your results to m horizontal parallel lines intersected by n parallel transversals.

The number of parallelograms visible, when h horizontals and t transversals are intersected, $u_n(h,t)$ can be determined considering the following:

The overall sum of parallelograms is equal to the sum of the number of parallelograms for of all possible sizes. The maximum size of a parallelogram is $(h-1) \times (t-1)$.

My Example Figure 20 examines the case that there are five vertical and four horizontal lines:

	e (in fields) height (y)	Number of possible parallelograms	Σ
1	1	$q_{11} = 12 = 4 * 3 = (5-1)(4-1)$	12
1	2	$q_{12} = 8 = 4 * 2 = (5-1)(4-2)$	20
1	3	$q_{13} = 4 = 4 * 1 = (5-1)(4-3)$	24
2	1	$q_{21} = 8 = 2 * 4 = (5 - 2)(4 - 1)$	32
2	2	$q_{22} = 6 = 3 * 2 = (5 - 2)(4 - 2)$	38
2	3	$q_{23} = 4 = 2 * 2 = (5 - 3)(4 - 2)$	42
3	1	$q_{31} = 6 = 2 * 3 = (5 - 3)(4 - 1)$	48
3	2	$q_{32} = 4 = 2 * 2 = (5 - 3)(4 - 2)$	52
3	3	$q_{33} = 2 = 2 * 1 = (5 - 3)(4 - 3)$	54
4	1	$q_{41} = 3 = 1 * 3 = (5 - 4)(4 - 1)$	57
4	2	$q_{42} = 2 = 1 * 2 = (5 - 4)(4 - 2)$	59
4	3	$q_{43} = 1 = 1 * 1 = (5 - 4)(4 - 3)$	60

Figure 20

The example shows that the number of parallelograms (q_{xy}) of a certain size $(x \times y)$ can be determined using the following rule:

$$q_{xy} = (h-x)(t-y)$$

If one adds all $q u_n(h, t)$ is obtained:

$$u_{n}(h,t) = \sum_{x=1}^{h-1} \left(\sum_{y=1}^{t-1} q_{xy} \right) = \sum_{x=1}^{h-1} \left(\sum_{y=1}^{t-1} (h-x)(t-y) \right)$$

$$= \sum_{x=1}^{h-1} \left((h-x) * \sum_{y=1}^{t-1} (t-y) \right)$$

$$= \sum_{y=1}^{t-1} (t-y) * \sum_{x=1}^{h-1} (h-x)$$

$$\sum_{i=1}^{n} (n+1) - i = \sum_{i=1}^{n} i$$

$$\therefore u_{n}(h,v) = \sum_{y=1}^{t-1} ((t-1)+1-y) * \sum_{x=1}^{h-1} ((h-1)+1-x)$$

$$= \sum_{y=1}^{t-1} (y) * \sum_{x=1}^{h-1} (x)$$

$$\sum_{i=1}^{n-1} i = \frac{1}{2} * (n-1) * ((n-1)+1)$$

$$= \frac{1}{2} * (n-1) * n$$

$$\therefore u_{n}(h,t) = \left(\frac{1}{2} * (v-1) * t\right) \left(\frac{1}{2} * (h-1) * h\right)$$

$$= \frac{(h-1)(t-1)ht}{4}$$

To verify my general statement I'll show how it works by using two examples.

Example 3:

General statement:
$$u_n = \frac{(h-1)(t-1)ht}{4}$$

Number of transversals: t = 5

Number of horizontal lines: h= 3

$$u_n = \frac{(3-1)(5-1)3 \times 5}{4}$$

$$u_n = \frac{(2)(4) \times 15}{4}$$

$$u_n = \frac{8 \times 15}{4}$$

$$u_n = \frac{120}{4}$$

$$u_n = 30$$

Figure 17 also verifies that my statement works.

Example 4:

General statement:
$$u_n = \frac{(h-1)(t-1)ht}{4}$$

Number of transversals: t = 5

Number of horizontal lines: h=2

$$u_n = \frac{(h-1)(t-1)ht}{4}$$

$$u_n = \frac{(2-1)(5-1)2 \times 5}{4}$$
$$(1)(4) \times 10$$

$$u_n = \frac{(1)(4) \times 10}{4}$$

$$u_n = \frac{4 \times 10}{4}$$

$$u_n = \frac{40}{4}$$

$$u_n = 10$$

Figure 4 underlines the correctness of my general statement.

Scope and Limitations:

By looking at all my work I made some observations in order to find out the scope and limitations:

- a. We cannot have negative numbers.
- b. There are no negative transversals or horizontals.
- c. There are no transversals or horizontals with a fraction.

 $h, t \in \mathbb{N}$

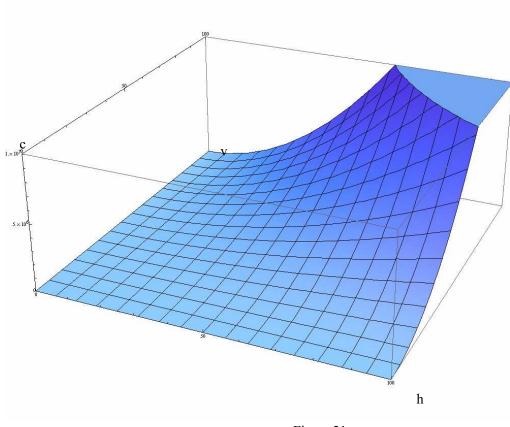


Figure 21

Figure 21 shows the graph I have plotted in order to visualize the general statement and its limitations.

The following sheet (Figure 22) shows a part of the table I have used to plot the graph.