

Description

In this task, you will investigate the patterns in the intersections of parabolas and the lines y=x and y=2x. Then you will be asked to prove your conjectures and to broaden the scope of the investigation to include other lines and other types of polynomials.

Method

- 1. Consider the parabola $y=(x-3)^2+2=x^2-6x+11$ and the lines y=x and y=2x.
 - The four points of intersections are illustrated in the graph below. Using a graphing program and a quadratic program, one can solve for these points.

The four points of intersection are:

 $x_1 \approx (1.764, 5.528)$

 $x_2 \approx (2.381, 2.381)$

 $x_3 \approx (4.618, 4.618)$

 $x_4 \approx (6.236, 12.272)$

• The x-values of these intersections are labeled as they appear from left to right on the x-axis as x_1 , x_2 , x_3 , and x_4 .

• The values of S_L and S_R are defined and solved.

$$\begin{split} S_L &= x_2 - x_1 \approx 2.382 - 1.764 \approx 0.618 \\ S_R &= x_4 - x_3 \approx 6.236 - 4.618 \approx 1.618 \end{split}$$

• Calculate $D=|S_L-S_R|$.

$$D=|S_L-S_R|\approx |0.618-1.618|=|-1|=1$$

- 2. Find values of D for other parabolas of the form y= ax²+bx+c, a>0, with vertices in quadrant 1, intersected by the lines y=x and y=2x. Consider various values of a, beginning with a=1. Make a conjecture about the value of D for these parabolas.
 - I'm going to consider three different parabolas with vertices in quadrant 1 in the form of form y= ax²+bx+c, a>0.

$$y=(x-4)^2+2=x^2-8x+18$$

$$y = 2x^2 - 8x + 9$$

$$y = 4x^2 - 20x + 26$$

To summarize, the results are listed in the chart below:

Formula	\mathbf{x}_1	\mathbf{x}_2	X ₃	X4	D
$y = x^2 - 8x + 18$	2.354	3	6	7.646	1
$y = 2x^2 - 8x + 9$	1.177	1.5	3	3.823	0.5
$y = 4x^2 - 20x + 26$	1.719	2	3.25	3.781	0.25

Conjecture:

The relationship of D and a looks like it should be:

D = |-1/a|

3. Investigating this conjecture further for any real value of a and any placement of the vertex, I try different values. The labeling convention used in parts 1 and 2 by having the intersections of the first line to be x_2 and x_1 and the intersections with the second line to be x_1 and x_4 will be maintained.

$$y = -x^2 - 2x + 6$$

$$y = -x^2 - 5x - 8$$

$$y = -2x^2 + 3x + 5$$

The results of investigating different real values of *a* and placement of the vertex is shown below:

Formula	X 1	x ₂	X3	X4	D
$y = -x^2 - 2x + 6$	-5.162	-4.372	1.372	1.162	1
$y = -x^2 - 5x - 8$	-5.562	-4	-2	-1.438	1
$y = -2x^2 + 3x + 5$	-1.351	-1.158	2.158	1.851	0.5

The conjecture still holds and the results of D fit the conjecture found in part 2.

Proof:	_
$y=ax^2-bx+c$	$y=ax^2-bx+c$
y=x	y=2x
y= x $ax^2-(b-1)x+c=0$ $x=(1-b)\pm\sqrt{((b-1)^2-4ac)}$	$ax^{2}-(b-2)x+c=0$ $x=(2-b)\pm\sqrt{((b-2)^{2}-4ac)}$
$x = (1-b) \pm \sqrt{((b-1)^2 - 4ac)}$	$x = (2-b) \pm \sqrt{((b-2)^2 - 4ac)}$
2a	2a
$x_{2,3} = (1-b) \pm \sqrt{((b-1)^2 - 4ac)}$	$X_{1,4} = (2-b) \pm \sqrt{((b-2)^2 - 4ac)}$
2a	2a

$$\begin{array}{l} S_L = x_2 - x_1 \\ S_R = x_4 - x_3 \\ D = \mid S_L - S_R \mid = \mid (x_2 - x_1) - (x_4 - x_3) \mid = \mid (x_2 + x_3) - (x_1 + x_4) \mid = \mid (1 - b)2/2a - (2 - b)2/2a \mid \\ = 1/a \mid 1 - b - 2 + b \mid = 1/a \end{array}$$

4. To prove that the conjecture will still hold with the lines are changed, I will use the same examples from part 2. Now, the two intersecting lines will be y=1.5x and y=3x.

$$y = x^2 - 8x + 18$$

$$y = 2x^2 - 8x + 9$$

$$y = 4x^2 - 20x + 26$$

Formula	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	D
$y = x^2 - 8x + 18$	2	2.614	6.886	9	1.5
$y = 2x^2 - 8x + 9$	1	1.307	3.443	4.5	0.75
$y = 4x^2 - 20x + 26$	1.546	1.837	3.538	4.204	0.375

Some modifications had to be made to the conjecture. The new conjecture is:

 $y=b_1x$ (these are the equations of the lines)

 $y=b_2x$

 $D=|b_2-b_1|/a$

So D is actually the absolute value of the difference of the slopes of the intersecting lines divided by the *a* of the parabola.

Proof:
$$ax^2 + (b - b_1)x + c = 0$$

$$ax^2 + (b - b_2)x + c = 0$$

$$x = \underline{-(b - b_1) \pm \sqrt{((b - b_1)^2 - 4ac)}}$$

$$2a$$

$$x = \underline{-(b - b_2) \pm \sqrt{((b - b_2)^2 - 4ac)}}$$

$$2a$$

$$D = |S_L - S_R| = |(x_2 - x_1) - (x_4 - x_3)| = |x_2 - x_1 - x_4 + x_3| = |x_2 + x_3 - x_1 - x_4| = |(x_2 + x_3) - (x_1 + x_4)|$$

$$x_2 + x_3 = [-(b - b_1)/2a]2 = -(b - b_1)/a$$

$$x_1 + x_4 = [-(b - b_2)/2a]2 = -(b - b_2)/a$$

$$D = |(-(b - b_1)/a) - (-(b - b_2)/a)| = |b_2 - b_1|/a$$

5. A similar conjecture can be made for cubic polynomials.

According to the fundamental theorem of algebra:

$$\begin{array}{l} ax^3 + bx^2 + cx + d = a(x - x_1)(x - x_2)(x - x_3) \\ (x - x_1)(x - x_2)(x - x_3) = x^2 - xx_1 - xx_2 + x_1x_2 \ (xx_3) \\ = x^3 - x^2x_1 - x^2x_2 - xx_1x_2 - x^2x_3 + xx_1x_3 + xx_2x_3 - x_1x_2x_3 \\ = a(x^3 - (x_1 + x_2 + x_3)x^2 + (x_1x_2 + x_2x_3 + x_1x_3)x - (x_1x_2x_3)) \\ = ax^3 - a(x_1 + x_2 + x_3)x^2 + a(x_1x_2 + x_2x_3 + x_1x_3)x - a(x_1x_2x_3) \end{array}$$

From the proof we can see what each of the coefficient equals:

a=a
b=
$$-a(x_1+x_2+x_3)$$

c= $a(x_1x_2+x_2x_3+x_1x_3)$
d= $a(x_1x_2x_3)$

From the expression for b, we can find the sum of the roots:

$$b = -a(x_1+x_2+x_3)$$

 $x_1+x_2+x_3 = b/-a = -b/a$

From the conjecture and proof for the parabola,

We know that:

$$D=|(x_2+x_3)-(x_1+x_4)|$$

For a cubic polynomial, we've found that the sum of the roots is -b/a so

$$D = |(-b/a) - (-b/a)| = 0$$

6. The conjecture can be modified to include higher order polynomials and it would very similar to the cubic one. For higher order polynomials, the roots will cancel out so D=0 will always be true.

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = a_n (x - x_n) (x - x_{n-1}) \dots (x - x_1)$$

$$a_n x^3 - a_n (x_n + x_{n-1} + \dots + x_1) + a_n (x_n x_{n-1} + x_{n-1} x_{n-2} + \dots + x_n x_1) + a_n (x_n x_{n-1} \dots x_1)$$

$$x_n + x_{n-1} + \dots x_1 = (a_{n-1}) / -a_n$$