Internal Assessment- Matrix Powers

The internal assessment will focused on observing patterns of matrix powers
which will be the main key to find the general expression of matrix powers.
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Explanation: When matrix M is powered by 2 it gives a result of M* = (0 4} from
: o , (80
GDC, when M is powered by 3 it gives a result of M~ = 0 8 from GDC and when M

b 0
is powered by 4 it gives a result of M* = ( 0 jfrom GDC. The pattern shown is that

every time M is powered by a number after its preceding number it is multiply by 2. For
instance, 4 shown in matrix M *, 8 shown in matrix M, and 16 shown in matrix M *.
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Thus, these results make a general expression that M" = 2" (
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is proven correct because when M > = 251( 0
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formula also works whenM® =2°"! (l 11 lj = ( @ j from GDC.
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Explanation: When matrix P is powered by 3 it gives a result of 4(7 9} , when matrix
: . r b L .
P is powered by 4 it gives a result of8 — and when matrix P is powered by 5 it

3l
gives a result of 16 (31 3 j . The pattern shown is that results have a common factor of

2"such as 4 shown in matrix P*, 8 shown in matrix P*, and then16 shown in matrix P°.
Once the resulting matrix is factor out, the left over numbers inside the matrix has a

general pattern of either 2" +1 such as 9 when n= 3, 17 when n = 4 and then 33 when n
=5o0r 2" —1such as 7 when n =3, 9 when n = 4 and then 31 when n = 5. Thus, these
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results make a general expression that P" = 2"
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j . This formula is proven
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formula also works when P® = 2% ] * ] = from GDC.
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Explanation: When matrix S is powered by 3 it gives a result of 4(25 ® jfrom GDC,
o o & 9 .
when matrix S is powered by 4 it gives a result of8 9 from GDC, and when matrix

24 2
S is powered by 5 it gives a result of 16 (22 " jfrom GDC. The pattern shown is that

results have a common factor of 2" such as 4 shown in matrix S*, 8 shown in matrix S*,
and then16 shown in matrix S°. Once the resulting matrix is factor out, the left over
numbers inside the matrix has a general pattern of either 3" +1 such as 28 when n =3, 82

whenn =4, and then 244 when n= 5 or 3" —1 such as 26 when n =3, 80 when n =4,
and then 242 when n = 5. Thus, these results make a general expression
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thatS" =2""
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when ¢ =25 3+l 3l = from GDC.
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3) When k=1, , k=2, , k=3, , k=4, , k=
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The pattern shows that the results of £ =1 is equivalent to result matrix M , where as the
results of k& =2 is equivalent to result matrix P and the results of k =3 is equivalent to

result matrix S”. The pattern also shows that when & =1 the matrix formula
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j, when k = 2 the matrix formula isM" = 2”1(
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number representing k corresponds to k" +1and k" —1. Thus, these results give a general
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and when k£ = 3 the matrix formula is " = 2”1( j . This shows that any

expression that( j For instance, if k =4and n=35

Explanation: After a further investigation with further values of k and n, the results
shows that the limitation for n is that » # all negative numbers and non-integers value
because when a matrix is powered by negative numbers or non-integers value the
calculator gives a math error text. In addition there’s no limitation for k.
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In conclusion,



