

LOGARITHM BASES

This internal assessment focuses on the logarithms. There are a few rules which govern all the concepts of logarithms:

$$\log_a b = c$$
, $a^c = b$ where a>0, a\neq 1, b>0

$$\log_a b = \frac{\log_c b}{\log_c a}$$

• Consider the following sequences. Write down the next two terms of each sequence.

$$\log \square 8$$
, $\log \square 8$, $\log \square 8$, $\log \square \square 8$, $\log \square \square 8$, $\log \square \square 8$

$$\log 31, \log 31, \log 31, \log 31, \log 31, \log 31, \log 31$$

$$\log \square 25, \log \square \square 25, \log \square \square 25, \log \square \square \square 25, \log \square \square \square \square 25$$

:

$$\log_m m^k, \log_{\mathrm{m}^2} m^k, \log_{\mathrm{m}^2} m^k, \log_{\mathrm{m}^4} m^k, \log_{\mathrm{m}^6} m^k, \log_{\mathrm{m}^6} m^k$$

• Find an expression for the nth term of each sequence. Write down your expression in the form $\frac{p}{q}$, where p, q $\in \mathbb{Z}$. Justify your answers using technology.

1.
$$\log_{2^n} 8 = \log_{2^n} 2^3$$

Use the
$$\log_a b = \frac{\log_c b}{\log_c a}$$
 rule.

$$\frac{\log_2 2^3}{\log_2 2^n}$$

Then we apply the rule: $\log_c b^a = a \log_c b$.

$$\frac{\log_2 2^3}{\log_2 2^n} = \frac{3\log_2 2}{n\log_2 2}$$

We can cross $\log_2 2$ away on both sides.

What remains is:
$$\frac{3}{n}$$

We can do this for all the rows.

2.
$$\log_{3^n} 81 = \log_{3^n} 3^4$$

Use the
$$\log_a b = \frac{\log_c b}{\log_c a}$$
 rule.

$$\frac{\log_3 3^4}{\log_3 3^n}$$

Then we apply the rule: $\log_c b^a = a \log_c b$

$$\frac{\log_3 3^4}{\log_3 3^n} = \frac{4 \log_3 3}{n \log_3 3}$$

We can cross log_3 3 away on both sides.

What remains is: $\frac{4}{n}$

3.
$$\log_{5}^{n} 25 = \log_{5}^{n} 5^{2}$$

Use the
$$\log_a b = \frac{\log_c b}{\log_c a}$$
 rule.

$$\frac{\log_5 5^2}{\log_5 5^n}$$

Then we apply the rule: $\log_c b^a = a \log_c b$

$$\frac{\log_5 5^2}{\log_5 5^n} = \frac{2\log_5 5}{n\log_5 5}$$

We can cross $log_5 5$ away on both sides.

What remains is: $\frac{2}{n}$

4. Expressed in m, n and k.

$$\log_{m^n} m^k$$

Use the $\log_a b = \frac{\log_c b}{\log_c a}$ rule and then we can change the base. We change the base to 10.

$$\frac{\log_m m^k}{\log_m m^n}$$

Then we apply the rule: $\log_c b^a = a \log_c b$

$$\frac{\log_m m^k}{\log_m m^n} = \frac{\mathbf{k} \, \log_m m}{n \log_m m}$$

We can cross $\log_m m$ away on both sides.

What remains is: $\frac{k}{n}$. Derived from this we can conclude that the general expression for the nth term of each sequence in the form $\frac{p}{q}$ thus is $\frac{k}{n}$.

Examples to justify this statement using technology:

$$\log_4 8 = \log_{2^2} 2^3 \quad (\log_{m^n} m^k)$$

$$\frac{\log 8}{\log 4} = \frac{3}{2} = 1.5$$

$$\log_{27} 81 = \log_{3^3} 3^4 \ (\log_{m^n} m^k)$$

$$\frac{\log 81}{\log 27} = \frac{4}{3} \approx 1,33$$

$$\log_{\frac{1}{5}} 125 = \log_{5^{-1}} 5^{3} \quad (\log_{m^{n}} m^{k})$$

$$\frac{\log_{125}}{\log_{\frac{1}{c}}^{1}} = \frac{3}{-1} \approx -3$$

• Now calculate the following, giving your answer in the form $\frac{p}{q}$, where p, $q \in \mathbb{Z}$.

The answer was $\frac{k}{n}$. This form will be used.

$$1.\log_4 64 = \log_{2^2} 2^6 (\log_{m^n} m^k)$$

$$\frac{\log 64}{\log 4} = \frac{6}{2} = 3$$

$$\log_8 64 = \log_{2^8} 2^6 (\log_{m^n} m^k)$$

$$\frac{\log 64}{\log 8} = \frac{6}{3} = 2$$

$$\log_{32} 64 = \log_{2^5} 2^6 (\log_{m^n} m^k)$$

$$\frac{\log 64}{\log 32} = \frac{6}{5} = 1.2$$

2.
$$\log_7 49 = \log_{7^1} 7^2 (\log_{m^n} m^k)$$

$$\frac{\log 49}{\log 7} = \frac{2}{1} = 2$$

$$\log_{49} 49 = \log_{7^2} 7^2 (\log_{m^n} m^k)$$

$$\frac{\log 49}{\log 49} = \frac{2}{2} = 1$$

$$\log_{343} 49 = \log_{7} 7^{2} (\log_{m} m^{k})$$

$$\frac{\log 49}{\log 343} = \frac{2}{3} \approx 0.67$$

$$3. \log_{\frac{1}{5}} 125 = \log_{5^{-1}} 5^{3} (\log_{m^{n}} m^{k})$$

$$\frac{\log 125}{\log \frac{1}{6}} = \frac{3}{-1} = -3$$

$$\log_{\frac{1}{125}} 125 = \log_{5^{-3}} 5^{3} (\log_{m^{n}} m^{k})$$

$$\frac{\log 125}{\log \frac{1}{125}} = \frac{3}{-3} = -1$$

$$\log_{\frac{1}{625}} 125 = \log_{5^{-4}} 5^3 (\log_{m^n} m^k)$$

$$\frac{\log 125}{\log \frac{1}{625}} = \frac{3}{-4} = -0.75$$

4.
$$\log_8 512 = \log_{2^8} 2^9 (\log_{m^n} m^k)$$

$$\frac{\log 512}{\log 8} = \frac{9}{3} = 3$$

$$\log_2 512 = \log_{2^1} 2^9 \ (\log_{m^n} m^k)$$

$$\frac{\log 512}{\log 2} = \frac{9}{1} = 9$$

$$\log_{16} 512 = \log_{2^4} 2^9 (\log_{m^n} m^k)$$

$$\frac{\log 512}{\log 16} = \frac{9}{4} = 2,25$$

• Describe how to obtain the third answer in each row from the first two answers. Create two more examples that fit the pattern above.

1.
$$\log_4 64$$
, $\log_8 64$, $\log_{32} 64 = \log_{2^2} 2^6$, $\log_{2^8} 2^6$, $\log_{2^5} 2^6$

As we can see, n=2 in the first logarithm and in the second logarithm n=3. If we add these together, we get n=2+3=5. That means that in the first row, the third answer is obtained by adding the first two n up together. The pattern is therefore that you add up the two n in front of the next logarithm.

The next two examples which would fit in the pattern would therefore be:

$$\log_{2^8} 2^6, \log_{2^{18}} 2^6 = \log_{256} 64, \log_{8192} 64$$

$$2. \log_7 49, \log_{49} 49, \log_{343} 49 = \log_{7^1} 7^2, \log_{7^2} 7^2, \log_{7^3} 7^2$$

As we can see, n=1 in the first logarithm and in the second logarithm n=2. There is an arithmetic increase, with the fixed number of 1. The next number in the second row will therefore be n=3. The pattern thus is that there is an arithmetic increase with the fixed number of 1.

The next two examples which would fit the pattern would therefore be:

$$\log_{7^4} 7^2$$
, $\log_{7^5} 7^5 = \log_{2401} 49$, $\log_{16087} 49$

$$3. \log_{\frac{1}{5}} 125, \log_{\frac{1}{125}} 125, \log_{\frac{1}{625}} 125 = \log_{5^{-1}} 5^{3}, \log_{5^{-8}} 5^{3}, \log_{5^{-4}} 5^{3}$$

As we can see, n=-1 in the first logarithm and in the second logarithm n=-3. If we add these up together, we get n=-1+-3=-4. That means that the third row, the third answer is obtained by adding the first two n up together. The pattern is therefore that you add up the two n in front of the next logarithm.

The next two examples which would fit the pattern would therefore be:

$$\log_{5^{-7}} 5^3$$
, $\log_{5^{-11}} 5^3 = \log_{\frac{1}{78125}} 125$, $\log_{\frac{1}{48828125}} 125$

4.
$$\log_8 512$$
, $\log_2 512$, $\log_{16} 512 = \log_{2^8} 2^9$, $\log_{2^4} 2^9$, $\log_{2^4} 2^9$

As we can see, n=3 in the first logarithm and in the second logarithm n=1. Something has to have been before the n=3, which means in front of the first logarithm. It should have started from n=0, as we can derive, from the second to the third logarithm, wherein there is an increase in n of 3. The pattern is therefore that you add 3 and you subtract 2 from the next logarithm and so forth.

The next two examples which would fit the pattern would therefore be:

$$\log_{2^2} 2^9$$
, $\log_{2^5} 2^9 = \log_4 512$, $\log_{32} 512$

• Let $\log_a x = c$ and $\log_b x = d$. Find the general statement that expresses $\log_{ab} x$ in terms of c and d.

 $\log_a x = c$ and $\log_b x = d$ then find $\log_{ab} x$

One law of logarithms state that:

$$\log_a x + \log_b x = \log_{ab} x$$

We use the change of base rule:

$$\log_a x = c$$
 then $a^c = x$

$$\log_b x = d \text{ then } b^d = x$$

$$\therefore \log_a c = \log x$$

$$\log_b d = \log x$$

We are taking logarithms in base x:

$$c \log_x a = \log_x x$$

$$\therefore d \log_{x} b = \log_{x} x$$

$$\therefore c = \frac{\log_x x}{\log_x b} = \frac{1}{\log_x a}$$

$$\therefore c = \frac{\log_x x}{\log_x b} = \frac{1}{\log_x a} \qquad \qquad \therefore d = \frac{\log_x x}{\log_x b} = \frac{1}{\log_x b}$$

Derived from $\log_a x + \log_b x = \log_{ab} x$ we can state that:

$$\frac{1}{\log_x a} + \frac{1}{\log_x b} = \frac{1}{(\log_x a + \log_x b)}$$

If we change the base again we get the following equation:

$$\frac{1}{(\frac{1}{\log_a x} + \frac{1}{\log_b x})}$$

We substitute $\log_a x = c$ and $\log_b x = d$:

$$\frac{1}{(\frac{1}{c} + \frac{1}{d})}$$

The following step is to multiply both sides by cd:

$$\frac{cd}{(c+d)}$$

The general statement that expresses $\log_{ab} x$ in terms of c and d thus is:

$$\frac{cd}{(c+d)}$$

• Test the validity of your general statement using other values of a, b, and x.

 $\log_a x = c$ and $\log_b x = d$

$$\log_2 8 = c \text{ and } \log_4 8 = d$$

$$\log_2 8 + \log_4 8 = \log_8 8 = 1$$

Check with the general statement:

$$c = \log_2 8 = \log_{2^1} 2^3 = \frac{3}{1} = 3$$

$$d = log_4 8 = log_2^2 2^3 = \frac{3}{2} = 1.5$$

$$\frac{cd}{(c+d)} = \frac{(3x1,5)}{(3+1,5)} = 1$$

General statement justified.

$$\log_5 25 = c \text{ and } \log_{125} 25 = d$$

$$\log_5 25 + \log_{125} 25 = \log_{625} 25 = 0.5$$

Check with the general statement:

$$c = \log_5 25 = \log_{5^1} 5^2 = \frac{2}{1} = 2$$

$$d = \log_{125} 25 = \log_{5^8} 5^2 = \frac{2}{3} \approx 0.67$$

$$\frac{cd}{(c+d)} = \frac{(2x_{\frac{2}{3}})}{(2+\frac{2}{3})} = 0,5$$

General statement justified.

3. Example:
$$a=10000$$
, $b=\frac{1}{10}$, $x=10$

$$\log_{10000} 10 = c \ and \ \log_{\frac{1}{10}} 10 = d$$

$$\log_{10000} 10 + \log_{\frac{1}{10}} 10 = \log_{1000} 10 = \frac{1}{3} \approx 0.33$$

Check with the general statement:

$$c = \log_{10000} 10 = \log_{10^4} 10^1 = \frac{1}{4} = 0.25$$

$$d = \log_{\frac{1}{10}} 10 = \log_{10^{-1}} 10^{1} = \frac{1}{-1} \approx -1$$

$$\frac{cd}{(c+d)} = \frac{\binom{1}{4}x(-1)}{\binom{1}{4}-1)} = \frac{1}{3} \approx 0.33$$

General statement justified.

• Discuss the scope and/or limitations of a, b, and x.

The limitations of logarithms are usually, as stated in the second sentence of this internal assessment:

$$a>0, a\neq 1, b>0;$$

which would mean for this question that the limitations are:

We can do a check for this:

$$\log_{-2} 4 = c \text{ and } \log_2 4 = d$$

$$\log_{-2} 4 + \log_2 4 = \log_{-4} 4 = Not possible$$

It is impossible to power a function which results in a negative number, in this case a = -2. With these numbers: $\log_{2^n} 2^2$, n>0.

The same applies for b, that a>0.

$$\log_{10} 100 = c \text{ and } \log_1 100 = d$$

$$\log_{10} 100 + \log_1 100 = Not possible$$

N=0 as $\log_{10^{\circ}} 10^{1}$, which makes it impossible, as you have to divide that number and $\frac{1}{0}$ = error/not possible.

The sample applies for a, that $b\neq 1$.

$$\log_4 - 8 = c \text{ and } \log_8 - 8 = d$$

$$\log_4 - 8 + \log_8 - 8 = Not possible$$

Same reason as in example 1: it is impossible to power a function which results in a negative number, in this case x (=-8). With these numbers: $\log_{2^{8}} 2^{k}$, k>0.

As a>0 and b>0, the product x should always be greater than 0, therefore x>0.

To sum up again:

• Explain how you arrived at your general statement.

One law of logarithms state that:

$$\log_a x + \log_b x = \log_{ab} x$$

We use the change of base rule

$$\log_a x = c$$
 then $a^c = x$

$$\log_b x = d$$
 then $b^d = x$

$$\log_a c = \log x$$

$$\log_b d = \log x$$

Take logarithms in base x:

$$c \log_x a = \log_x x$$

$$\therefore d \log_x b = \log_x x$$

$$\therefore c = \frac{\log_x x}{\log_x a} = \frac{1}{\log_x a} \qquad \qquad \therefore d = \frac{\log_x x}{\log_x b} = \frac{1}{\log_x b}$$

$$\therefore d = \frac{\log_x x}{\log_x x} = \frac{1}{\log_x x}$$

Derived from $\log_a x + \log_b x = \log_{ab} x$ we can state that:

$$\frac{1}{\log_{x} a} + \frac{1}{\log_{x} b} = \frac{1}{(\log_{x} a + \log_{x} b)}$$

If we change the base again we get the following equation:

$$\frac{1}{(\frac{1}{\log_a x} + \frac{1}{\log_b x})}$$

We substitute $\log_a x = c$ and $\log_b x = d$:

$$\frac{1}{(\frac{1}{c}+\frac{1}{d})}$$

The last and following step is to multiply both sides by cd:

$$\frac{cd}{(c+d)}$$