Maths Portfolio

SL Type 1

Matrix Binomials

In this mathematics portfolio we are instructed to investigate matrix binomials
and algebraically find a general statement that combines perfectly with our matrices
and equations given.



MATRIX BINOMIALS
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We were then requested to find expressions for X", Y" and (X +Y)"
by considering the integer powers of X and Y-




X"=2""X
yr=2""y
(X+Y) =2""(X+Y)

These expressions were found by observing that the result of

X", Y" and (X +Y)" was always the matrix to the power of n multiplied by 2 to
the power of n-1. The sequence of results gives us: 1, 2, 4 and 8, reaffirming our

expressions are correct because 1= 20 2=21 4=022 8=23,
Given that:

A=aX and B =bY where aand b are constants

We were asked to find 4°,4°, 4*; B*,B’,B" using different values of a and b and

then find the expressions for 4", B" and (4+ B)" .
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1 1
A=a
1 1
a a
a a

And:
I -1
B=b
)
b b
B=
o

Assuming that a = 2
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Assuming that b = -1
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Assuming that b=5
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To find the expression for A" | observed that the final results achieved were always
the value chosen for a multiplied by the matrix X and the product to the power of n.
For example (assuming a = 2):
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As a result we can see that:

A" =(aX)"
And since we know X" =2""X
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To find the expression for B” | did the same as for A" changing the value ato b
and Xto Y.
For example (assuming b = -1):
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As a result we can see that:
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And sincewe know ¥ =2""Y

B"=b"2""Y or B" =p"2""
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Tofind (A+ B)" | used the binomial theorem
(A+B)=A+B

(A+B)’ =A>+2AB+ B’
(A+B)’ = A4’ +34’B+3A4B*> + B’
(A+B)' =A"+4A4°B* +44°B> +44B° + B*

From the binomial theorem we can see that the values of A and B multiply by each

other on every term except the first and the last, where we find A" and B".



However if we multiply matrix A by B we will see that the product will be a zero
matrix.

a a\(b -b ab—ab ab-ab 0 0

a a)\-b b ab—ab ab-ab 0 0
This allows us to cancel every term in which A multiplies B or vice-versa, as the
result will be zero.

Therefore if we cancel these terms we will be only left with A"+ B".
This means that (4+B)" = 4"+ B"

Now we were given:
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And asked to prove that M = A+ B and M*> = A4* + B*
So:
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Tofind M* = A + B? , first we need to calculate A2 B2and M2
So:
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To find the general statement that expresses M " in terms of aX and bY we first
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By analyzing all 4 values for M " we can see that the result can be put into 2"
multiplied by 2a+2b in a sequence.
Example:

a+b=2"2a+2b)

2a° +2b° =2'(2a + 2b)
4a’ +4b> =2(2a+ 2b)
8a*+8b* =2°(2a+ 2b)

Hence we can say that our general statement is:



M" =2""(a+b)"
M"=2""(a"X"+b"Y")
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M"=a"X"+b"Y"

Testing the validity of my general statement, to do this we had to get the same
results for both expressions:

M"=a"X"+b"Y"
M"=(A+B)"
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‘ Marked by Teachers
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M' =

n

n

4

2315 7
o
5 %)

4
4 4

Assuming: a=-1,b=-3,n=1

M" =(A+B)"

M' =

M' =




Assuming: a=-5,b=2,n=1
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M"=a"X"+b"Y"
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Assuming:a=2,b=2,n=-2
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Assuming:a=2,b=2,n=0
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After testing the validity of my general statement we can see that the results for both
formulas were mostly compatible for all numbers of a, b and positive n, proving the
validity of our statement. However when n is zero or a negative integer we find some
problems with it. As we can’t power a matrix to a negative number n can’t be a
negative number and when 0 we find out all matrices to the power of 0 form identity

matrices that when added in the formula M" = A4+ B " it differs from our other result
which is a identity matrix as well.

To get to this formula algebraically | did:

M =A+ B

A=aX
M"= A+B" o by
M":An+Bn/

M"=a"X"+b"Y"
This can be concluded by:

M?=(A+B) =A>+2A4B+ B’

M’ =(A+B) = A +34°B+3A4B° + B’
M*=(A+B) ' =A4*"+44°B* +44°B*> +44B° + B*
By knowing that AB =0:

M"= A+B"

M"=A4"+B"

And finally | found the general expression:

M"=a"X"+b"Y"



