

Parallels and Parallelograms

Mathematics Coursework

This task will consider the number of parallelograms formed by intersecting m horizontal parallel lines with n parallel transversals; we are to deduce a formula that will satisfy the above.

Methodology

1. We started out the investigation with a pair of horizontal parallel lines and a pair of parallel transversals. One parallelogram (A_1) is formed (shown in *Figure 1*)

2. A third parallel transversal is added to the diagram as shown in *Figure 2*. Three parallelograms are formed: A_1 , A_2 , and $A_1 \cup A_2$

3. When a fourth transversal is added to *Figure 2* (*Figure 3*), six parallelograms are formed. A_1 , A_2 , A_3 , $A_1 \cup A_2$, $A_2 \cup A_3$, $A_1 \cup A_3$

Figure 4 has 5 transversals cutting the pair of horizontal parallels, forming ten parallelograms. A₁, A₂, A₃, A₄, A₁ ∪ A₂, A₂ ∪ A₃, A₃ ∪ A₄, A₁ ∪ A₃, A₂ ∪ A₄, A₁ ∪ A₄

5. A sixth transversal was added to *Figure 5*, forming 15 parallelograms shown in Figure 6. A_1 , A_2 , A_3 , A_4 , A_5 , $A_1 \cup A_2$, $A_2 \cup A_3$, $A_3 \cup A_4$, $A_4 \cup A_5$, $A_1 \cup A_3$, $A_2 \cup A_4$, $A_3 \cup A_5$, $A_1 \cup A_4$, $A_2 \cup A_5$, $A_1 \cup A_5$

6. When a seventh transversal is added, twenty-one parallelograms are formed (*Figure 7*). $A_1, A_2, A_3, A_4, A_5, A_6, A_1 \cup A_2, A_2 \cup A_3, A_3 \cup A_4, A_4 \cup A_5, A_5 \cup A_6, A_1 \cup A_3, A_2 \cup A_4, A_3 \cup A_5, A_4 \cup A_6, A_1 \cup A_4, A_2 \cup A_5, A_3 \cup A_6, A_1 \cup A_5, A_2 \cup A_6, A_1 \cup A_6.$

7. I then used technology (*table 1.0*) to record the above and calculate the differences between the parallelograms formed with each addition of a transversal.

Number of Horizontal Lines	Number of transversals	Number of Parallelograms formed	First difference between terms	Second difference between terms
2	2	1		
2	3	3	2	
2	4	6	3	1
2	5	10	4	1
2	6	15	5	1
2	7	21	6	1

Table 1.0

At this point, I realized that the 'First difference between terms' was somewhat similar to what happens with the terms in a triangle sequence:

Also since the number of parallelograms created as the number of transversals increased each had a Second Order difference of 1, it was immediately known that the general formula must be a quadratic equation. So to find the formula I followed the following steps:

$$ax^{2} + bx + c$$

$$x = 1 \quad a + b + c = 1$$

$$x = 2 \quad 4a + 2b + c = 3$$

$$x = 3 \quad 9a + 3b + c = 6$$

Then solve them as simultaneous equations

$$a+b+c=1$$

$$4a+2b+c=3$$

$$3a+b=2$$

$$4a+2b+c=3$$

$$5a+b=3$$

$$9a + 3b + c = 6$$

Solve the two new equations as simultaneous equations 3a + b = 2

$$5a + b = 3$$

Jia-Der Ju Wang

Answer:
$$a = \frac{1}{2}$$
 $b = \frac{1}{2}$ $c = 0$

Replace the values in the following formula $\alpha^2 + bx + c$

$$\frac{1}{2}x^2 + \frac{1}{2}x$$
$$\frac{x^2 + x}{2} = \frac{x | x + 1}{2}$$

But when I tried out the formula I found out that the answers didn't match:

$$U_2 = 3 (3+1) = 6$$

 $U_3 = 4 (4+1) = 10$

The results we had have moved one term so instead of adding 1 to "n", we need to subtract 1 to "n" so the values can match. Now our final formula is:

$$U_n = \underline{n (n-1)}$$

Once again I tested the above:

$$U_2 = 2 (2 - 1) = 1$$

 $U_3 = 3 (3 - 1) = 3$
 2

8. In order to find the general formula for the parallelograms formed by m horizontal parallel lines intersected by n parallel transversals; I decided to further the investigation by considering the number of parallelograms formed by <u>three</u> horizontal parallel lines intersected by a pair of parallel transversals (*Figure 8*). Three parallelograms were formed: A_1 , A_2 , and $A_1 \cup A_2$

9. When a third transversal was added to the above figure, nine parallelograms were formed (*Figure 9*). A_1 , A_2 , A_3 , A_4 , $A_1 \cup A_2$, $A_3 \cup A_4$, $A_1 \cup A_3$, $A_2 \cup A_4$, $A_1 \cup A_4$

10. One more transversal was added to *Figure 9*, to form 18 parallelograms (*figure 10*). A_1 , A_2 , A_3 , A_4 , A_5 , A_6 , $A_1 \cup A_2$, $A_3 \cup A_4$, $A_5 \cup A_6$, $A_1 \cup A_3$, $A_3 \cup A_5$, $A_2 \cup A_4$, $A_4 \cup A_6$, $A_1 \cup A_5$, $A_2 \cup A_6$, $A_1 \cup A_6$, $A_1 \cup A_6$

11. When I added the fifth transversal to Figure 10, it became incredibly difficult to count the parallelograms; luckily by then a pattern had emerged and I was able to predict the next few terms (recorded in *table 1.1*):

Number of Horizontal Lines	Number of transversals	Number of Parallelograms formed	Multiple	Difference between multiples	First different between terms	Second difference between terms
3	2	3	3 x 1			
3	3	9	3 x 3	2	6	
3	4	18	3 x 6	3	9	3
3	5	30	3 x 10	4	12	3
3	6	45	3 x 15	5	15	3
3	7	63	3 x 21	6	18	3

Table 1.1

Now the 'Second Order Difference' is 3 – triple the first set of parallelograms (pair of parallels intersecting with parallel transversals). Due to the second order being three, I deduced and found true that the number of parallelograms was increasing in multiples of three. The difference between the multiples is 2,3,4,5, and 6; which again follows

the triangle number sequence. This meant that subsequently the formula for m horizontal parallel lines intersected by n parallel transversals would include the formula for the triangle sequence.

12. To make my statements broader I expanded my table to the following (table 1.2):

	Number of parallel transversals							
	2	3	4	5	6	7	n	
2	1	3	6	10	15	21		
3	3	9	18	30	45	63		
4	6	18	36	60	90	126		
5	10	30	60	100	150	210		
6	15	45	90	150	225	315		
7	21	63	126	210	315	441		
m								

Table 1.2

See graph 1 to get a more graphical view of how the number of parallelograms formed by m horizontal parallel lines intersected by n parallel transversals are very sequential, by looking at the graph, the sequence is much more evident.

13. When I compared all the formulas I got, I found the relationship which led me to find the general formula.

3 horizontal lines:
$$\frac{3(n(n-1))}{2}$$

4 horizontal lines:
$$\frac{6(n (n - 1))}{2}$$

5 horizontal lines:
$$\frac{10(n (n-1))}{2}$$

The number and sequence repeat the formula $(\underline{n(n-1)})$ and multiplies by the first term.

14. From this realization I was able to find that the final formula for calculating the number of parallelograms formed when *m* horizontal parallel lines are intersected by *n* parallel transversals:

$$\frac{m(m-1)}{2} \quad x \quad n(n-1) \\ 2$$

15. To test the validity of the formula I tested it against previously counted parallelograms (*Figure 10*), the intersection of 4 transversals with 3 horizontal parallel lines should form 18 parallelograms:

Using the formula:

$$\frac{m(m-1)}{2} \quad x \quad n(n-1)$$

$$\frac{3(3-1)}{2}$$
 x $\frac{4(4-1)}{2}$

$$\frac{3(2)}{2}$$
 x $\frac{4(3)}{2}$

$$\frac{6}{2}$$
 x $\frac{12}{2}$

= 18 parallelograms

<u>Limitations</u>

It is very difficult to test the validity of the formula when there are lots of parallel transversals intersecting lots of horizontal parallels, because even though we will get a number, to prove there are so many parallelograms is confusing and difficult; therefore we can only assume that the answer might be right.

Jia-Der Ju Wang

Number of parallelograms formed by m horizontal parallels intersecting with n parallel transversals

Jia-Der Ju Wang