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Investigating the Sine Curve

This report investigates the sine curve in the form o v = a sin[b{x —c)] +d f, and how

that relates to the graph of the sine curve. In particular, it would be investigated how the
different variables (a, b, c and d) effect the way that the graph is drawn and then seeing if the

rule can be generalized to apply to any form of the equation.

The first thing to do would be to allow b, ¢ and d to be 0, which would mean that the
equation v = a sin[b{x — c)] + d takes the form of: v = a sin{x). It can be seen from Graph 1.1
that when a is 1 what graph you get (the red graph) and when a is allowed to be 2 what the
graph looks like (the blue graph). From the graph below it can be seemn that increasing =
stretches the graph by the factor of change in a. In simple words, the graph of v = 2sin{x)
would be twice the height of v = sin{x) as is clearly seen from Graph 1.1.

: When | change the value for @, all the value of the

sine curve get multiplied by that value of @, which

. is 2 in this case. By multiplying all the values of the
curve by a the height of each point in the curve

increases while there is no change in the position

of the graph in the x-axis. For the original sine
graph (v =sin{x)) it is common knowledge that
the relative minima and maxima are -1 and 1
respectively, however when the @ is changed the

-

- — original minima and maxima are also multiplied by
a and RErdbrE tRRTEW Trilitia 3% maxima would become -a and a respectively. The rest of
the graph also gets stretched by a as this is the number that the whole curve is being multiplied
by.

This time when we change the value of @ we would change it into a fraction, one fraction

would be smaller than 1 whereas the other one would bigger than 1. It can be seen that when
you have a fraction that is smaller than 1 for your a value the height of the sine curve ill

decrease to the height of @z. On the other hand, having a bigger fraction than 1 increases the

height of the sine curve to the a value as can 2
be seen from Graph 1.2.

From these two graphs, it can be said that
when a is bigger than 1 the graph stretches

outwards, whereas when a is smaller than one | 3=....-32

the graph will stretch inwards. It is also seen
that changing the a of the sine curve changes

Graph 1.2: Graph of y = sin{x}, y =

1 | ke

sin{x and
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the minima and maxima of the graph to ta. All the values of the sine curve are being multiplied

by @ and therefore there is only a vertical shift and no horizontal shift.

We must not forget that a could be a

negative number as well and this has been
explored with Graph 1.3 on the right hand side.
In the sine curve v = asin{x) if the a becomes

negative then all the values of the sine curve
would be multiplied by the negative number. This
would mean that all the positive values become
negative and all the negative values become
positive. To put this into simple terms the graph
flips over with respect to the x-axis. Other than
flipping over with respect to the x-axis, the graph

stretches according to a. In Graph 1.3 v = sin{x) Graph 1.3: Graph of y = sin(x) and
has been flipped over and stretched by a factor of 1
—= to give the new graph of v = —=sin(x).
Overall, it can be seen that in v = asin[b{x — cJ] + d the a represents the ‘height’ of the

graph. In mathematics this ‘height’ is known as the amplitude of the graph, meaning that in the
equation above, @ represents the amplitude of the graph. When a is negative the graph is not

only stretched by @ but it is also flipped over the x-axis. This is happening because all the v

values of the graph are multiplied by a which causes there to be a shift in the amplitude of the
graph without affecting the horizontal position of the graph.

Moving on, we now set a,c and d at 0 giving the equation v = a sin[b{x —c)] +d the

form of v = sin(bx). It is observed that changing the & has the same effect as changing the a in

the equation, except rather than the curve stretching vertically it stretches horizontally. This is
known as a period in mathematics. It is the interval between likewise values, or in simpler terms

-

Graph 2.1: Graph of y = [} (7ly, [T= [T (7T and

the interval before the graph ‘repeats’ itself. The
graph below shows the curve stretching inwards or
outwards (depending on whether the b value is
greater than or smaller than 1) without changing
the vertical position of the curve.

The reason that this horizontal stretch occurs is
because all the x values of the curve are multiplied

by a factor of . This means that a lower value of x
is required to get the same value as the original

graph. An example of this can be seen when x = -

in the original graph, v = sin® =1 (as can be seen
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from Graph 2.1). However it can be seen that when b is 2, a lower value of x is required to get

v =1. When y = sin(2x) the value of x would need to be = so thaty = sin [EEJ =sins=1.

This tells us that all the values of x would be half of what they were originally causing the curve
to become narrower and therefore decreasing the period of the curve. On the other hand, when
the value of b is smaller than 1 a bigger value of x would be required to get the same value of .

For example, if you need the graph v = sin:jj% 1) to give you the same value as the graph of

v = sin(x) when x is = then the value of x would need to be 7 in the curvey = sin:jj% x).

As it has already been mentioned, by changing the b of the equation you either stretch
the graph inwards or outwards (depending if the value of b is bigger or smaller than 1). When
you increase the value of b you decrease the period of the graph and when & is decreased the

period of the graph increases. However, what
happens if the value of b is a negative number? : 2

When the value of b is negative it has the same

effect as when @ is negative. This is because i
v =sin{—x) is the same as v = —sin{x). This /\/\/\/\
means that a negative & value would flip the [& #: 4 ye

graph with respect to the x- axis as shown in
Graph 2.2.

In general it is observed that in the

equation v = asin[b{x —c)]+d the period of
the curve is given by :u—'_ By changing the value of b you can change the period of the graph.

When you increase the b the period of the graph
decreases and when you decrease the b the Graph 2.2: Graph of y = sin{2x]) and

period of the graph increases. This means that
the curve only stretches in the horizontal direction while there is no stretch in the vertical
direction of the curve.

When you make a,b and d O you get the equation v = sin{x —c). In this equation, ¢
corresponds to the horizontal translation of the
> graph. When ¢ is a positive number the

translation is a horizontal translation to the right,
: whereas when the value of ¢ is negative the

graph translates to the left by ¢ units as
illustrated by Graph 3.1.

/ \\></ \\X When you change the value of ¢ you subtract

the original value of x by ¢, and therefore the x

Graph 3.1: Graph of y = sin(x}, y = sin{x — : and
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value of the new curve would be increased by ¢ to match the ¥ value. For example, when x = m,
where cis 0, v = sin{m) = 0. However when there is a value for ¢,y = sin{x — ¢) cannot be 0
unless x — ¢ = 7 in which case x must be equal to ™ + ¢. This would translate the point and the
rest of the graph by ¢ units to the right. This would only cause a translation meaning that there is

no change in the amplitude or the period of the curve. From Graph 3.1, it can also be seen that
that when c is a negative number, the equation becomes v = sin{x + ¢} and this causes the

graph to translate ¢ units to the left.

From Graph 3.2 it can be seen that the value
of ¢ can be any number. It can either be a fraction, a

whole number or even an irrational number. The
same concept follows for fractions and irrational
numbers as well, where the value of ¢ dictates the

horizontal translation of the curve.

Overall, it is observed from this graph and the above
graph that the ¢ in the equation

v = asin[b{x — ¢)] + d corresponds to the horizontal

position of the sine graph. When you change the
Gra\ﬁﬁlgipé?at&eo?'gg gl.r]?&h’\ﬁ(oglsdmt%% D()Tglgontally translated to the right by ¢ units if the value of ¢
is positive e{und likewise to the left when the value of ¢ is negative.
an

Now we will set @, b and ¢ 0 so that we obtain the equation v = sin{x) + d. Changing the
value of d has a similar affect as changing the value of ¢, however the difference is that instead

of there being a horizontal translation there is a vertical translation. Graph 4.1 is used to
describe this translation, and it is seen from that graph that when d is positive there is a vertical

shift upwards in the sine curve and when the value

of d is negative the sine curve shits down vertically.

The value of d is the value that the v values are

added by. Therefore, by changing the value of d to

a positive value you ensure that the graph will be
translated upwards by d units as the d value is

added to the original v value. An example of this is

that in the original graph v = sin{x), when x =,

the value of v is 0. However if you add a value of d

to the equation so that it now looks like:
v =sin{x) + d then the new value of v would be <

different. Let the value of d be 2 in the new curve

when x =7 and your new value of v would be ¥ = sin(w) + 2 =0+ 2 = 2 rather than 0 and

Graph 4.1: Graph of y = sin{x],

v =sinlx) + 2 and
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therefore translating the graph upwards.

On the other hand, when the value of d is a negative number the graph shifts
downwards. An example of this can be seen from Graph 4.1. In the equation v = sin{x) +d, if x

was 7 and d was —% then v value would be —% rather than 0. For this to happen the curve must

shift downwards and therefore a negative value of d means that the sine curve shifts down
vertically.

In general it can be said that the value of d corresponds to the vertical position of the
sine curve. This means that if you change the d in the equation v = a sin[b{x —cJ] + d then you
can translate the curve in a vertical direction by d units.

All in all we can talk about how the different variables of the equation
v = asin[b(x — cJ] + d effect the sine curve and what they all represent. The first thing that we

found out was that the variable a represents the amplitude of the graph meaning the height of
the graph. The amplitude of the graph would be the value of a. On the other hand, the value of b

corresponds to the period of the curve where the period is given by :TF Moving on, we saw that

the variables ¢ and d correspond to the horizontal and vertical translation of the sine curve
respectively. The curve is translated c to the right horizontally and d units vertically upwards
from the original sine curve.

Since we know the general rule of the variables, it can help predict what the graphs
would look like, and how they would have been translated from the original curve. This can be

done by just identifying the different variables a,b, ¢ and d. We will predict the graphs of
y =1sin(2x) +1, ¥y = —3sin(x—3) and y = 4sin [2 (x +EJ] ~2 and then we will test our
predictions by graphing these equations.

First of all we examine the equation v = %sin:jjfx} + 1 and identify the different variables.

In this equation @ ==, b = 2, ¢ = 0 and d = 1. This means that the amplitude of the graph would

IR s

be % causing the original curve to be stretched inwards, whereas the period of the new curve

would be :H—F = . Since the value of cis 0, there would be no translation in the horizontal

direction, however the curve would be translated upwards in the vertical direction by 1 unit. On
the other hand, the second equation v = —3 sin::x—f} would be look different from the first

equation. In this equation the variables are as following, a = —=3,b =0,c = E and d = 0. This

means that the amplitude of this graph would be 3, an outwards stretch from the original graph.
The negative means that the graph would be flipped over with respect to the x- axis. Since the b
is 0 there would be change in the period of the graph, whereas the graph would be translated by
funits to the right horizontally with no change in the vertical position of the graph since d = 0.
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We can now examine the last equation v = 4sin [2 [x +§J] —§. In this equation the variables

look as following: a =4, = 2,c = —g and d = —%. This means that the amplitude of this new

graph would be 4, causing an outwards stretch of the original graph. Since & = 2 the period of
the graph would be reduced to¥ = . Since,c = —g the graph would be translated gunits to

the left horizontally whereas the curve would shift downwards vertically by —% units.

The graphs below indicate that the predications that were made about the translation of
the graphs hold true, and therefore this means that the conclusions we had come up with about
the variables were indeed correct.

raph-5.2: Graph-of y X sin (x}-and
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Graph 5.3: Graph of y = sin(x and
vy =4sin|Zlx —E'_I_ -

ra |t

So far in this investigation it has been observed that if we are given an equation which is
in the form v = asin[b{x —c)] +d we can predict the shape and position of the sine graph.

However what if the equation is not in that form as happens a lot of times? If the equation is not
written in the form as written above then it can be transformed to that form as has been done
with three examples below. The three equations that would be transformed are:

2 sznl:f.x—‘—'-'rf r 5 T
————==and lastly the graph v = —siniax —m) + .

o -

ax—T

v = 2sin [ J+=, v =

If we look at the first equation, then the first thing to do in that equation would be to split
the fractions so that the equation now looks like: v = 2sin ["—“—l—_}+§ Once that has been

done we can now factorize the brackets’ section by % and therefore the equation would look like:

y = 2sin [% (3x — ——)] +§ This final step would now be to factorize the entire equation by 3 so

that the equation looks like: v = 2 sin [% [x = %J] + f Now that this equation is in the form that we

require it to be, we can see the difference variables _and see how the sine curve has been
transformed. In this grapha =2, b ==, c = '3—_ and d ==. This would suggest that the graph as

an amplitude of 2, causing the graph to stretch outwards by 2 units. The period would be%

making the period be : This ¢ and d value tells us that graph has been translated horizontally

[ ]

by;—T units to the right whereas it has been translated - units vertically upwards.

We can use a similar method for the rest of the equations:

'-.:‘I—I:'x
2sin (21 - "TJ
¥ = f splitting the fraction
2 / 2w
v =—gin| 2x — —) factorizing by 2
YEFES T e

- -
y = 3sin [2 (A‘ - EJ]
From this it can be seen that a = é b=2,c= '3—_ and d = 0. This would mean that the amplitude

of the graph would be é causing the original graph to be stretched inwards byé units. Not only

this, by the period of the new graph would be ™ and there would be a horizontal translation in
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the graph of;—T units to the right hand side while there is no translation in the vertical translation
of the graph.

Lastly we will look at transforming the last equation in_to the desired form. The first step,
and only step to transform the equation v = —sin{mx — ) + ; is to factorize by 7, as this would
change the equation to: v = —sin[m{x —1)] +':E . Now it can be seen that the value of
a=—-1b=mc=1and lastly, d = E This means that the new curve would be flipped over with
respect to the x- axis, however there will be no change in the amplitude. The period of the curve
would be given by :{ = 2. And finally it is observed the graph translates 1 unit horizontally to the

right whereas the graph translates upwards vertically.

From all the graphs, discussions and examples it is clearly seen that when the sine
curve is written in the form v = asin[b({x —c)]+d we can get a lot about the graph. The

represents the amplitude of the curve, the period of the graph is written by%whereas the
values of ¢ and d translate the graph horizontally and vertically respectively.
So far in this investigation we have been gathering the shape and look of the graph from

just the equation, however we will now do it the other way around. We will find the equation of
the curve from the graph.

The graph on the
right hand side shows the fx)sinlx)
sine curve and the cosine fixjcosix)
curve together. It can be

observed that the curve of | .1x
v = cos{x) looks just like
the curve of v =sin{x)

and therefore could be a

translation. Just like the  sine curve, the amplitude (2) of the cosine curve is 1, whereas, the
= 5ln

period (&) of the cosine curve is 2 (just |ﬁiéa§f?18'?:h?vr€f”n%’é¥ning tﬁéta{ﬂ% b value of the cosine
curve would be 1. The only difference in the sine and cosine curve seems to be that the cosine
curve has been translated to the left hand side by — units, meaning that the value of ¢ = —— and

the value of d =0. When we plug the numbers into the equation of the sine curve

v = asin[b{x —c)]+d the equation that we get is the following: ¥ = sin (1+;J Since this
equation is for the cosine curve we can say that cos(x) = sin (x +;j However, there is another

way to express this translation. It can be said that the graph of v = sin{x) was flipped with

respect to the x axis and then translated horizontally to the right by'ﬂE units. When this is the

case a becomes—1, b and d remain 0 and ¢ changes from —Zto-. The equation for this new
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translation would look like cos(x) = —sin [x —

I:l|'|

J and is something else which could be used for

calculations in trigonometry.

In conclusion, it was observed that there is a strong relationship between the variables of
an equation and how the graph looks. In terms of the sine curve, the variables represent the
amplitude, the period and the translations (horizontal and vertical) of the curve. This allowed us
to come up with a graph without having to plot it, and when we plotted the graph our guess was
shown to be correct indicating that the idea of the variables was correct. Near the end of the
investigation, we used these variables and the sine curve to come up with a relationship
between the sine and cosine curve which would then help us in future trigonometry calculations.
Just like that, we can deduce different relationships between different sorts of sine, and cosine
functions to help us in future calculations.

Greg McLean



