

SL Portfolio Type 1

(Mathematical Investigation)

Infinite Surds

2009-2010

Launch Date: 7 Oct 2009 (Wed)

Submission Deadline: 21 Oct 2009 (Wed), 3 pm.

This great work

is done by

Anh Linh, 5Y

I. Introduction:

In this portfolio, firstly I will find out the equation for the nth term of this infinite surd:

$$\sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots}}}}$$

And I will use data table and graph to suggest about the value of $a_n - a_{n+1}$ when it gets very large. After that I will prove an equation to calculate the exact value of the infinite surd. Followed by repeating all the same steps above but for the other infinite surd:

$$\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...}}}}}$$

After I repeated all the steps for this surd, I will consider about the general infinite surd:

$$\sqrt{k + \sqrt{k + \sqrt{k + \sqrt{k + \sqrt{k + \dots}}}}}$$

Using all the steps that I did for the others two surd, I will find an expression for the exact value of this general infinite surd in terms of k. Furthermore, I will find the general statement that represents all the values of k for which the expression is an integer.

Nonetheless, I will discuss the scope and limitations of my general statement. And finally I will explain how I arrived my general statement and the integer expression.

II. BODY:

The following expression is an example of an infinite surd:

$$\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+...}}}}}$$

Consider this surd as a sequence of term a_n where:

$$a_1 = \sqrt{1+\sqrt{1}}$$

$$a_2 = \sqrt{1+\sqrt{1+\sqrt{1}}}$$

$$a_3 = \sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1}}}} \ etc.$$

The formula for a_{n+1} in terms of a_n :

$$a_{n+1} = \sqrt{1 + a_n}$$

Calculate the decimal values of the first ten terms of the sequence:

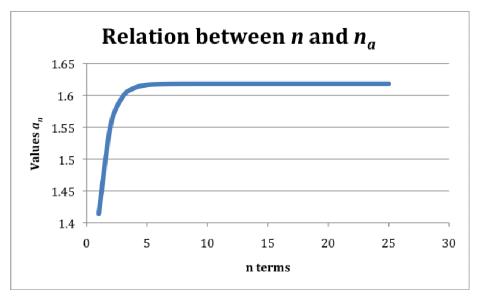
Using MS Excel 2008

Terms		Values
	1	1.414213562
	2	1.553773974
	ω	1.598053182
	4	1.611847754
	5	1.616121207
	6	1.617442799
	7	1.617851291
	8	1.617977531
	9	1.618016542
1	0	1.618028597
1	.1	1.618032323
1	2	1.618033474
1	.3	1.61803383
1	4	1.61803394
1	.5	1.618033974
1	6	1.618033984
1	7	1.618033987
1	8.	1.618033988
1	9	1.618033989
2	20	1.618033989
2	21	1.618033989
2	22	1.618033989
2	23	1.618033989
2	24	1.618033989
2	25	1.618033989

Notice:

The formula to calculate the second column: B2=SQRT(1+SQRT(1)) then following to the next values will be B3=SQRT(1+B2) etc...

Plot the relation graph between n and a_n :



(This graph I used the software Microsoft Excel 2008 to draw)

Evaluation:

As the graph shown, as the n gets very large, the values of a_n still be the same. Hence the value of $a_n - a_{n+1}$ is equal to 0. According to the data table, after the 4th term, all the data have the same until 1.61 which is 2 decimal place. And after a_{18} , all the values are exactly have the same value 1.618033989.

As we have:

$$a_{n+1} - a_n = \sqrt{1 + a_n} - a_n$$

However, when it comes to exact value:

$$a_{n+1} - a_n = 0$$

$$\Rightarrow \sqrt{1 + a_n} - a_n = 0$$

$$\Rightarrow \sqrt{1 + a_n} = a_n$$

$$\Rightarrow 1 + a_n = a_n^2$$

$$\Rightarrow a_n^2 - a_n - 1 = 0$$

Using quadratic formula to solve this equation:

$$x = \frac{-b \pm \sqrt{b^2 - 4\alpha}}{2a}$$

Notice: $x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$ This value is canceled out because the value of a square root can not be negative.

Thus:

$$a_{n} = \frac{-(-1) + \sqrt{(-1)^{2} - 4(1)(-1)}}{2(1)}$$

$$a_{n} = \frac{1 + \sqrt{5}}{2}$$

$$\Rightarrow a_{n} = 1.680$$
(conat)

Consider another infinite surd:

$$\sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}}}$$

The first term is $a_1 = \sqrt{2 + \sqrt{2}}$

Calculate the decimal values of the first ten terms of this sequence:

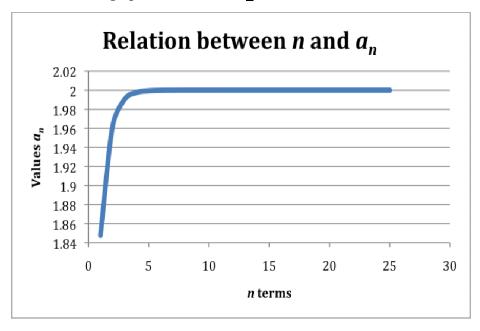
Using MS Excel 2008

Terms		Values
	1	1.847759065
	2	1.961570561
	3	1.990369453
	4	1.997590912
	5	1.999397637
	6	1.999849404
	7	1.999962351
	8	1.999990588
	9	1.999997647
	10	1.999999412
	11	1.999999853
	12	1.999999963
	13	1.999999991
	14	1.999999998
	15	1.999999999
	16	2
	17	2 2
	18	2
	19	2
	20	2
	21	2 2 2 2
	22	2
	23	2
	24	2
	25	2

Notice:

The formula to calculate the second column: B2=SQRT(2+SQRT(2)) then following to the next values will be B3=SQRT(2+B2) etc...

Plot the relation graph between n and a_n :



(This graph I used the software Microsoft Excel 2008 to draw)

Evaluation:

(I repeat the entire process above)

As the graph shown, as the n gets very large, the values of a_n still be the same. Hence the value of $a_n - a_{n+1}$ is equal to 0. According to the data table, the a_8 , a_9 and a_{10} already have the same value 1.99999, equivalent until 5 decimal place. And after 15th term, all the value are exactly the same values 2.

As we have:

$$a_{n+1} - a_n = \sqrt{2 + a_n} - a_n$$

However, when it comes to exact value:

$$a_{n+1} - a_n = 0n$$

$$\Rightarrow \sqrt{2 + a_n} - a_n = 0$$

$$\Rightarrow \sqrt{2 + a_n} = a_n$$

$$\Rightarrow 2 + a_n = a_n^2$$

$$\Rightarrow a_n^2 - a_n - 2 = 0$$

Using quadratic formula to solve this equation:

$$x = \frac{-b \pm \sqrt{b^2 - 4\alpha}}{2a}$$

Notice: $x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$ This value is canceled out because the value of a square root can not be negative.

Thus:

$$a_{n} = \frac{-(-1) + \sqrt{(-1)^{2} - 4(1)(-2)}}{2(1)}$$

$$a_{n} = \frac{1 + \sqrt{5}}{2}$$

$$\Rightarrow a_{n} = 2$$
(anat)

Consider the general infinite surd:

$$\sqrt{k + \sqrt{k + \sqrt{k + \sqrt{k + \dots}}}}$$

The first term is: $a_1 = \sqrt{k + \sqrt{k}}$

The a_{n+1} term in term of a_n :

$$a_{n+1} = \sqrt{k + a_n}$$

An expression for the exact value of this general infinite surd in terms of *k*:

$$a_{n+1} - a_n = \sqrt{k + a_n} - a_n$$

$$\Rightarrow a_{n+1} - a_n = 0n$$

$$\Rightarrow \sqrt{k + a_n} - a_n = 0$$

$$\Rightarrow \sqrt{k + a_n} = a_n$$

$$\Rightarrow k + a_n = a_n^2$$

$$\Rightarrow a_n^2 - a_n - k = 0$$

Using quadratic formula to solve this equation:

$$x = \frac{-b \pm \sqrt{b^2 - 4\alpha}}{2a}$$

Thus:

$$a_n = \frac{-(-1) + \sqrt{(-1)^2 - 4(1)(-k)}}{2(1)}$$

$$\Rightarrow a_n = \frac{1 + \sqrt{1 + 4k}}{2}$$

The exact value of this general infinite surd in terms of k is:

$$a_n = \frac{1 + \sqrt{1 + 4k}}{2}$$

As we can see the value of an infinite surd $\sqrt{k+\sqrt{k+\sqrt{k+\sqrt{k+\sqrt{k+\dots}}}}}$ is not always an integer.

Example:

$$k = 3$$

$$\Rightarrow \sqrt{3 + \sqrt{3 + \sqrt{3 + \sqrt{3 + \sqrt{3 + \dots}}}}}$$

Table shows the first ten terms of this infinite surd:

(Using MS Excel 2008)

Terms		Values
	1	2.175327747
	2	2.274934669
	3	2.296722593
	4	2.301460969
	5	2.302490167
	6	2.302713653
	7	2.302762179
	8	2.302772715
	9	2.302775003
	10	2.3027755
	11	2.302775608
	12	2.302775631
	13	2.302775636
	14	2.302775637
	15	2.302775638
	16	2.302775638
	17	2.302775638
	18	2.302775638
	19	2.302775638
	20	2.302775638
	21	2.302775638
	22	2.302775638
	23	2.302775638
	24	2.302775638
	25	2.302775638

Notice:

The formula to calculate the second column: B2=SQRT(3+SQRT(3)) then following to the next values will be B3=SQRT(3+B2) etc...

Therefore, the value of an infinite surd is not always an integer.

To find some values of k that makes the expression an integer

$$a_n = \frac{1 + \sqrt{1 + 4k}}{2}$$
$$\Rightarrow a_n \in \mathbb{Z}$$

1st method

Hence, we will have this equation for the relation between a_n and k:

$$\Rightarrow a_n = \frac{1 + \sqrt{1 + 4k}}{2}$$

$$2a_n = 1 + \sqrt{1 + 4k}$$

$$2a_n - 1 = \sqrt{1 + 4k}$$

$$(2a_n - 1)^2 = 1 + 4k$$

$$4a_n^2 - 4a_n + 1 = 1 + 4k$$

$$\frac{4a_n^2 - 4a_n + 1 - 1}{4} = k$$

$$\Rightarrow a_n^2 - a_n = k$$

$$\Rightarrow k = a_n(a_n - 1)$$

Therefore the general statement for k is a product of two consecutive integers.

2nd method

Or I can use another method to prove this general statement and also check the result of it.

Back to the $a_n = \frac{1 + \sqrt{1 + 4k}}{2}$, for a_n to be integer, $1 + \sqrt{1 + 4k}$ must divided-able by 2

which are even number. Therefore, $\sqrt{1+4k}$ must be odd number. And 1+4k must be a perfect square, if not the result value will be irrational number.

Here are the table showing the first 50th term of perfect square:

$1^2 = 1$	$11^2 = 211$	$21^2 = 441$	$31^2 = 961$	$41^2 = 1681$
$2^2 = 4$	$12^2 = 144$	$22^2 = 484$	$32^2 = 1024$	$42^2 = 1764$
$3^2 = 9$	$13^2 = 169$	$23^2 = 529$	$33^2 = 1089$	$43^2 = 1849$
$4^2 = 16$	$14^2 = 196$	$24^2 = 576$	$34^2 = 1156$	$44^2 = 1936$
$5^2 = 25$	$15^2 = 225$	$25^2 = 625$	$35^2 = 1225$	$45^2 = 2025$
$6^2 = 36$	$16^2 = 256$	$26^2 = 676$	$36^2 = 1296$	$46^2 = 2116$
$7^2 = 49$	$17^2 = 289$	$27^2 = 729$	$37^2 = 1369$	$47^2 = 2209$
$8^2 = 64$	$18^2 = 324$	$28^2 = 784$	$38^2 = 1444$	$48^2 = 2304$
$9^2 = 81$	$19^2 = 361$	$29^2 = 841$	$39^2 = 1521$	$49^2 = 2401$
$10^2 = 100$	$20^2 = 400$	$30^2 = 900$	$40^2 = 1600$	$50^2 = 2500$

As we can see all the odd number perfect square will have an odd number as a result. Let call v^2 is the sum of 1 + 4k which v is an odd integer.

Then:

$$1 + 4k = v^{2}$$

$$\Rightarrow 4k = v^{2} - 1$$

$$\Rightarrow k = \frac{v^{2} - 1}{4}$$
[1]

Which $v^2 - 1$ is even number, and divided-able by 4. And v^2 is an odd number, $\Rightarrow v$ also an odd number

Formula of an odd number: v = 2u + 1 [2]

(*u* is a random integer number)

From [1] and [2] we have:

$$k = \frac{(2u+1)^2 - 1}{4}$$

$$\Rightarrow k = \frac{4u^2 + 4u + 1 - 1}{4}$$

$$\Rightarrow k = u^2 + u$$

$$\Rightarrow k = u(u+1)$$

Hence the general statement for k is a product of two consecutive integers.

Checking the general statement that represents all the values of k for which the expression is an integer using the 1^{st} method.

If

$$a_n = 3$$

$$\Rightarrow k = 3(3-1) = 6$$

This infinite surd is
$$\sqrt{6 + \sqrt{6 + \sqrt{6 + \sqrt{6 + \sqrt{6 + \dots}}}}}$$

Table shows the first ten terms of this infinite surd:

(Using MS Excel 2008)

Terms		Values
	1	2.906800603
	2	2.984426344
	3	2.997403267
	4	2.99956718
	5	2.999927862
	6	2.999987977
	7	2.999997996
	8	2.999999666
	9	2.999999944
	10	2.999999991
	11	2.999999998
	12	3
	13	3
	14	3
	15	3
	16	3 3 3
	17	3
	18	3
	19	
	20	3
	21	3
	22	3
	23	3
	24	3
	25	3

Notice:

The formula to calculate the second column: B2=SQRT(6+SQRT(6)) then following to the next values will be B3=SQRT(6+B2) etc...

After checking the values table of the infinite surd $\sqrt{6 + \sqrt{6 + \sqrt{6 + \sqrt{6 + \sqrt{6 + \dots}}}}}$ and $a_n = 3$. Hence, the general statement that represents all the values of k for which the expression is an integer is correct.

Now I will test the 2nd method using a greater number, for example 99

If

$$u = 99$$

 $\Rightarrow k = 99 (99 + 1) = 9900$

This infinite surd is
$$\sqrt{990} + \sqrt{990} + \sqrt{990} + \sqrt{990} + \frac{1}{100} + \frac{1}{100}$$

Table shows the first ten terms of this infinite surd:

(Using MS Excel 2008)

Terms		Values
	1	99.99749369
	2	99.99998747
	3	99.9999994
	4	100
	5	100
	6	100
	7	100
	8	100
	9	100
	10	100
	11	100
	12	100
	13	100
	14	100
	15	100
	16	100
	17	100
	18	100
	19	100
	20	100
	21	100
	22	100
	23	100
	24	100
	25	100

Notice:

The formula to calculate the second column: B2=SQRT(9900+SQRT(9900)) then following to the next values will be B3=SQRT(9900+B2) etc...

Therefore, the 2^{nd} method also correct as which the exact value is 100, an even and divided-able by 2 integer.

III. Conclusion:

After all the tests and checking the general statement, they prove that my result are true and correct for all the values of k. Nonetheless, I have also solved the other questions at the beginning of this portfolio and found the general formula for the exact value of this $\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}}}$ and this $\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\cdots}}}}}$ surd formula in general with difference method and examples. As this part, I have done all the

question of the mathematics portfolio for IB students 'Infinite Surd'/