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This portfolio is an attempt at deriving and examining the scope and limitations of a general statement
that can approximate the area under a curve using trapezoids. Generally, calculus — specifically the
method of integration, is used to find the exact area under a curve. Although this method will be explored
in comparison later in the portfolio, this investigation deals mainly with investigating a method to
approximate the area using high school level math. First, this portfolio will attempt to derive a general
statement that will give an approximation of the area under the curve of any function in any closed
interval using n trapezoids. Then, by applying the formula to sample functions, the answers given can be
compared to the integral answers, allowing an examination into the accuracy of the trapezoid method of
approximation. Lastly, by examining different behaviors of a graph, this portfolio will investigate the
cause of any inaccuracies in this method.

The graph: g{x) = x? + 3 is given:

Figure 1 — Graph of g{x) = x%+3

Using two trapezoids mapped onto the curve in the domain D: {x|0 = x = 1,x € R}, the area under the
curve in that domain can be approximated as the sum of the areas of the two trapezoids.

In order to map the trapezoids onto the graph, one must first divide the domain by the number of
trapezoids being used, in order to find the height of the trapezoids (which is equivalent to each other). It
should be noted that the height is not a vertical distance in this case, but the distance between the two
parallel sides of a trapezoid. With the general case D:{x|a = x = b,x € R}, height can be calculated

. b . .
with the formula — where n is the number of trapezoids.
n

In this case, the height will work out to:

1-0

= 0.5,

=
&

Thus, the first (from the left) trapezoid will be mapped from g{0) to g({0.5), and the second trapezoid
from g{0.5) to g{1). The first trapezoid will have vertices at {0, 0, (0.5,07, (0, g(0)), {{], I, (0.5}} and the
second trapezoid will have vertices at (0.5, 07, {1,0), (0, g(0.5)), {0, g (1}};
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Figure 2 — Two trapezoids mapped onto g!:x} = x2+3

The formula to calculate the area of a trapezoid is given as A = %h(a + b) where h is the height, and @
and b are the lengths of the parallel sides.

For the first trapezoid, the area is calculated to be:

4= 2(0.5)[g(0) + g(05)] = 3(3+3.25) = 15625 units’
And the second trapezoid:

4; = 3(05)[g(05)+ g(] = Z(325+4) = 18125 units’

And the total area being:
A =A; + A; = 15625 units? + 1.8125 units? = 3.38 units?

For the same function, examine the calculation when the same method is attempted with 5 trapezoids:

Figure 3 — Five trapezoids mapped onto g{x) = x% +3
The height will work out to:

170 _ g2
5

Thus, the trapezoids will be mapped between g{0) and {1} with equivalent heights of 0.2.

Using the formula for area of a trapezoid, the total area is calculates as the sum of 5 separate area
. 1 . .
calculations, one for each trapezoid. They all share the common factor of - and 0.2, what differentiates



them will be the g(x) values. The first trapezoid will have those values as [g(0) + g(0.2)], the second as
[2(0.2) + g(0.4)], and so on until the 5™ trapezoid as [g(0.8) + g(1)]. This gives the following calculation:

Atﬂtﬂ! 5 Al +Ag +A3 + A4 + AE
Arorar =502)[g(0) + g(02)] +3(02)[5(02) + 5091 +3 0:2)[g(04) + 5(06)]

+302[06) + g08)] +30[g(08) + g (1]

B3|

Factoring out = and {0.2):

A = 30[9(0) +5(02) +9(02) +9(0.4) + 5(04) + 9(06) + 5(0.6) + 5(08) +5(08)

+ g(1)]
Avorar = (0.1)(3 +3.04 +3.04 + 3.16 + 3.16 + 3.36 + 3.36 + 3.64 + 3.64 + 4) = 3.34 units?

The area approximated by using 5 trapezoids differs in value to the approximation using only 2
trapezoids. Examine the following diagrams of the approximated area using 1-8 trapezoids:
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Diagram 1 — 1-10 trapezoids mapped onto g'.x) = x* +3

In a chart, the approximated areas (calculated using the program Graphmatica) are:
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# of Trapezoids Approximated
Used Area (units?)
1 3.50
2 3.375
3 3.514
4 3.348
5 3.34
6 3.338
7 3.3367
8 3.3359

Diagram 2 — Approximated Areas (left unrounded to showcase increasingly gradual differences)

One can notice with this data that as the area is approximated with an increasing number of trapezoids,
the approximated area approaches a limit similar to how a function would approach an asymptote.

Comparing the calculation used to approximate the area with 5 trapezoids to the calculation with 2
trapezoids, it is possible to come up with a general expression that can be used for the function g{x) in
any domain, with any number of trapezoids. In doing that, first examine the diagram below, which shows
how to map n trapezoids under the curve for the function g{x) = x% + 3, in the domain

D:x|0=x= 1,xE Rk
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Diagram 3 — Illustration of how to map 7 trapezoids onto gi.x) = x* +3

To begin, one needs to find the area of each of the trapezoids that will be mapped onto this function. That
1
will be done by manipulating the area of a trapezoid formula of A = ~h{a+ b} for this specific case. h

., 1-0 . . .
can be replaced with e where n is the number of trapezoids used. a+b can be replaced with:

g{0) + g{xy) for the first trapezoid, g{x1) + g{x4) for the second trapezoid, g{x5) + gi{x5) for the
third and so on. Because x,, is /, the second to last a+b replacement will be g{x, =) + gi{x,—1), and
the last one g{x,—1) + g(1).
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This gives the following formulas for the area of each trapezoid:
4= 3(57) [9(0) + g(x)]

() [a(x2) + g(x2)]

() [9(x2) + g(x3)]

o
I

1
1

Ay = 3(2) [9(rn2) + 9(xus)]

=
&

Ay =2 (Z0) [90Gena) + 8(1)]

In adding the areas of multiple trapezoids, the separate area formulas for each of them will be terms in a
calculation whose sum gives total area, as was demonstrated in the calculation for 5 trapezoids. Thus:

Atotﬂ! == Al +A2 +A3 + ...+ A?‘!—1+A?‘:

Acorar = 5(57) 8@ + gGe+ 2 (7)o ) + g1+ £(57) la(x) + glx)] +
(59 [9Gna) + 9Gnp] + (Z7) [90enng) + g(1)]

Ba | b

ba |

and (=2):

n

Which can be factored by taking out the values of

Aear = 5(=7) [9(0) + g+ g(e) + gr) + g(x)+ g(ra) e + glen) + glras) +
90xn1)+ (D]

Noticing the terms g{x ) — where k is any whole number — each appear twice, the expression can be
further simplified:

1/1-0
Aorar = 5 (=) [900) + 2gCr) + 2g(x) + 29(x3) . + 29(xn_2)+ 2g(xn_1)+ g(D)]
The above is now the general expression for finding the area under the curve in the function

glx) = x? + 3, fromx = 0tox = 1 usingn trapezoids.

In order to develop from that a general statement that will estimate the area under any curve where

¥ = f(x), and in the general domain of D: {x|a = x = b, x € R} using n trapezoids, one can modify the

formula to accept the variables a instead of 0 and b instead of 1, as well as replacing g{x} with f{x],

giving:
1/b—a

Atotar = 3 (—) [fla) + 2f(x) + 2f(x) + 2f(x3) .. + 2f(xp2)+ 2f(xn-1)+ F(B)]

n

As examples, this investigation will find approximated areas for the following 3 functions using the
general formula derived above, in the domain D: {x|1 = x = 3,x € R], using 8 trapezoids:
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Example Function 1 Example Function 2 Example Function 3
2 Ox
X3 — A3 2
_ ™ = x)=4x"— 23x° +40x — 18
f(x) (2) fx) Vvxi+ 9 fx)

Diagram 4 — Three example functions to be investigated

)

Figure 4 — Example Function 1 mapped with 8 trapezoids

Acorar= 5 () [F(@) + 2F (r) + 27(x) + 2f(xa) + 2f(x)+ 2f(x5) + 2f (xe) +2F (x7) +
F(B)]

Lt (z)§+ E(i)
total — 2 7 7

Appns = g (15.8402) = 1.98 units?

2)

using the same method Figure S — Example Function 2 mapped with 8 trapezoids

Aioear = 8.25 units?
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3)

Figure 6 — Example Function 3 mapped with 8 trapezoids
using the same method oj suosTITUTION A5 I &) ...

Arprar = 4.69 units?

To measure the accuracy of the approximations generated by using 8 trapezoids, this investigation will
compare its results with the mathematically exact procedure of integrating the functions. The integrals
will be calculated using a Ti-84 Plus Calculator’s fnlnt function.

z .
D () ax 2) fy (=) ax 3) Ji(4x® — 23x2 + 40x — 18) dx
1) A = 1.98 units? 2) A = 826 units? 3) 4 = 4.67 units?
Comparing the results:
using the general statement with 8 using the method of
Function trapezoids integration
z
XyE
flx) = (‘) 1.98 units? 1.98 units?
5= . .
flx) = VxEF g 8.25 units- 8.26 units-
flx)=4x®— 23x% +40x — 18 4.69 units? 4.67 units?
Diagram 5 — Comparing Trapezoid Method with Integration

One can notice that the approximations using the area of 8 trapezoids are very close to the actual area
under the curves. For example function 1, it was equivalent (when both answers are taken to 3 significant
digits). For example function 2, it was off by 1/100™. For example function 3, it was off by 2/100™. This
begs the question, why are there greater differences in accuracy depending on the function?

Looking at the graphs, it becomes clear as to the reason. The accuracy of the trapezoid method is
dependent on the behavior of the graph within the domain in which the trapezoid method is being applied.
When the graph is increasing at a semi-steady rate, as in the first function, the trapezoid method excels in
approximating the area under the curve with accuracy. It can be concluded then that the closer the slope
of a curve is to being constant, the more accurate the approximation. However, when the domain contains
a maximum or minimum point of any kind within the domain specified, the accuracy decreases because
the slope of the graph changes from negative to positive, gradually, but the trapezoid can only make
abrupt changes. The second function has one absolute max point within the specified domain, and the
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trapezoid method’s accuracy was 1/100™ off. The third function has both its local max and min points in
the domain specified, and the accuracy was twice as deviant as the second function’s was.

In theory, this inaccuracy could be addressed by using a greater number of trapezoids to approximate the
area. Because the inaccuracy stems from the linearity of a trapezoid’s edge — the smaller and more
numerous the trapezoids, the more closely they can be mapped to the curvity of the function and the more
accurate the approximation. What would make the result no longer an approximation but the actual
answer could then be theorized to be the use of an infinite number of trapezoids. Manipulating the
derived formula to accept the use of an infinite number of trapezoids gives:

Aot = 5(*2) 1@ + 27 () + 270c) + 27(x).. + 27(x) + FO)]

To simplify this, first examine the terms 2f {x, ) where k is any whole number. They all share a factor of
2, and the number of terms there is dependent on how many trapezoids are being used. Thus, factoring out
the 2 and replacing the rest with a summation to infinity results in the following formula:

Aot =3 () {f(a} +2 (i f(xk}) - f(b}]
k=1

This formula however, is useless when one examines how to calculate a summation to infinity of a
sequence. Inspect the formula:

a is the first term in the sequence (also equivalent to f{x4) )and r is the rate of change between terms.
Since the rate of change is neither constant nor calculable without calculus for an infinite number of
infinitely thin trapezoids, this theoretical formula is useless. However, the same principal of using an
infinite number of polygons to measure the area under a curve is used in the mathematical process of
integration, which is the accepted way of finding the definite value of the area under a curve.

Returning to approximating the area under a curve using a finite number of trapezoids, this investigation
has examined how a max/min point within the specified domain affects the accuracy of the
approximation. Having done that, the next step is exploring how other behaviors of a graph can influence
the accuracy of the approximations. For example, can this method of approximation be used when the
domain specified has the graph approaching a vertical asymptote?

1

Take the function flx) = =t

Figure 7 — Graph of fx) = +]

The — —_— trapezoid method of approximating the
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area under the curve in the domain D:{x|1 = x = 3,x € R} will fail, because the lower limit of the
interval is unbounded. Because there is no value to begin the area calculation, it is essentially infinite and
thus an incalculable value.

. N . . 3 1
However, upon investigation, the method of integration: [} 1 (ﬁ) dx also produces an error when

trying to calculate the area under the curve. Thus, it can be concluded that this inability to measure the
area in a domain that has a vertical asymptote in it not a limitation on the trapezoid method of
approximation itself, but simply a mathematically impossibility. From this conclusion, it can also be
deduced that trying to find the area under a curve where the domain is composed of one or more open
intervals — for example D:{x|a < x < b,x € R}, will fail for the same reasons.

As another investigation, take the trigonomic function f{x) = cosx:

Figure 8 — Graph of f(x) = cosx mapped with 8 trapezoids

The area approximated as:

A = 5 (%) 7@ + 2£Ce) + 27 () + 2 Gea) .+ 2f Cepea) + 2f Ces) + O]

A —1(3_1)[ 142052 + 2055 +2 cos— +2cos2 + 2cos + 2o +2 cos— + 3}
roral = 5|5 ) [€08 cos +2cos cos cos cos +2cos3 cos— -+ cos

Avprar = —0.70 units?

The actual area:

3
AtﬂrE!ZJ‘ cosx
1

Aiprar = —0.70 units?

The behavior of the graph is trigonomic. Except for oscillation, the behavior of the graph is similar to a
third degree polynomial function, such as the one in Figure 8. Thus, one can assume that the accuracy will
be similar in how the local max/min’s within the specified domain. The other behavior which this
function shows that has not been explored is how the method of approximation works when the graph
goes below the x axis. In examining the answers generated by both the trapezoid method and the
integration method being negative, it can be concluded that area “above the curve” when it is below the x
axis will be counted as negative area.



The method of approximation in this case would not encounter any deviances if the interval of the
individual trapezoids happens to correspond with the x intercept, but this is rarely the case. As shown in
Figure 8, the third trapezoid from the left that is mapped onto the function, an abnormality occurs when
the x intercept lies within a mapped trapezoid. Roughly a third of the trapezoid is above the x axis (has
positive area) and the rest under the x axis (has negative area). Thus, one can see that when mapping the
trapezoid the vertex f (x5 will not connect with the vertex at (x5, but the one on the x axis itself, x 5.
Consequently, f{x3)is connected with x4, enclosing the polygon. While this abnormality occers in trying
to graph the function, no abnormality occurs in the mathematics. Examining the third trapezoid, its area is

1/3-1 3 .
definedas A3 = = (?) [cos; + CDS-ﬂ, which works out correctly as the area above the curve
subtracted from the area under the curve.

Although this case provided an approximation that was accurate, examining the graphical abnormality
shows a significant source of error. Zoomed in on the graph:

__________________________________________________________________

Figure 9 — Zoom in on Trapezoid 3 of Figure 10

The blacked out portions show where the trapezoid’s area has been included despite being significantly
deviant to the function itself. Thus, if the domain included multiple x intercepts, the inaccuracies would
mount. This applies to all functions, and is not specific to trigonomic ones. It is notable however, that
using more trapezoids will reduce the error in the same way that it will reduce the error for inaccuracies
caused by max/min points within the domain.

Thus, this investigation has found 2 main sources of error influencing the trapezoid method of
approximating the area under a curve: if the domain includes local or absolute max/min points, and if the
domain includes x intercepts.

In conclusion, this study has determined that it is possible to approximate the area under any curve
without using the method of integration by mapping trapezoids under the curve. A formula that does
exactly that was derived, and this method’s scope, limitation and accuracy were explored by applying the
formula to different functions. In defining the scope of the trapezoid method, this investigation found it
impossible to find the area under a curve when the graph approached a vertical asymptote within the
specified domain. The limitations of the trapezoid method were determined to lie in 2 separate areas: the
number of trapezoids used and the behavior of the graph (specifically if the specified domain included
max/min points and x intercepts) both affected the accuracy of the approximation. In trying to eliminate
inaccuracy, this study found a theoretical method to find the exact value of the area under a curve, but it
was unusable due to a indeterminable variable. The theory though, corresponded with the theory behind
the method of integration in that they both used an infinite number of polygons mapped under the curve.
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Technology Used:
Graphmatica Free Trial by kSoft
TI 84-Plus Silver Edition Graphing Calculator
Microsoft Office Word 2007
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