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Introduction:

In this portfolio, | will investigate a pattern of numbers that can be represented by
a regular geometric arrangement of equally spaced points. The simplest examples of
these are square numbers, 1, 4, 9, 16, which can be represented by squares of side 1,
2, 3 and 4. Other geometric shapes which can lead to special numbers are the
triangular shapes and the stellar (star) shapes. Our calculations will be based on the
sets of triangular and stellar diagrams that are already provided and those that will be
constructed. The aim of this investigation is to examine and determine the general
statement for geometric patterns that lead to special numbers as well as to demonstrate
a good and clear understanding of patterns and the operations that can be done with
them. At the end of the project, we should be able to generate expressions and
recognise patterns of other various geometric arrangements.

Triangular Pattern:

In the following, | will examine how we can derive general statements of patterns
within triangular shapes. To begin, we can use a sequence of diagrams to better
illustrate the pattern:

1=1 3=1+42 6 =1+2+3

10 = 1+2+3+4 15 = 1+2+3+4+5 21 =

28 = 1+2+3+4+5+6+7 36 = 1+2+3+4+5+6+7+8
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Firstly, looking at the pattern, we can see that the number of dots is the sum of a
series of consecutive positive numbers. Considering this pattern within the triangular
diagrams, we can use it to formulate the general formula. In the Math 10 pure
curriculum, we were taught the sum of the series of consecutive 100 positive numbers.
Accordingly, the sum of the first 100 positive numbers =1 +2 + 3... + 100 = (1+100) +
(2+99) + ...+ (50+51) = (50)(101) = 5050. In another form, the sum can be expressed as
(50)(100 + 1). By using this information, we can deduce the number of dots in each
diagram of the triangular pattern in which follows a similar pattern.

The variables are as follows: tn = triangular number (numbers of dots)
n = the stage

In order to modify the expression for the previous series of 100 consecutive
positive numbers into the general formula for the triangular pattern, we can simply
replace the number 100 within the expressing (50)(100+1) by n. The reason for which
is because within the context of the series of 100 consecutive numbers, there is 100
terms and therefore the 100" stage. Also, as you can see the 50 within the expression
is derived by dividing 100 by 2. As such, it can be modified as being (n/2). After the two
modifications, we can rewrite the expression for adding consecutive a hundred positive
numbers into the general statement: tn = (n/ 2)(n + 1). After simplifying this
multiplication of a monomial by a binomial, we get the general statement as: tn = 0.5n°
+ 0.5n. This general statement can also express the pattern of triangular geometric
shapes as it poses the same pattern as the series of 100 consecutive positive numbers.

Nevertheless, there is also an entirely new method of finding a general statement
that represents the n triangular number in terms of n that is enabled by the triangular
geometric shape. Considering the follow arrays of rectangular diagrams shown below:
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In each diagram, there are two copies of the triangular diagram, a black one and a white
one. The original triangular diagrams from stage 1 to stage 8 now transformed into
rectangles. It can be realized then that the number of dots of the original triangular
diagram can be derived through the simple triangular area formula:

1
It is easy to see then that: A= E bh
The 1% triangular number= (1 X 2)/2 =1
The 2™ triangular number= (2 X 3)/2=3
The 3" triangular number= (3 X4)/2=6
The 4™ triangular number= (4 X 5)/2 =10
The 5™ triangular number= (5 X 6) /2 = 15
The 6™ triangular number= (6 X 7) / 2 = 21
The 7™ triangular number= (7 X 8) / 2 = 28
The 8" triangular number = (8 X 9) /2 = 36
In general, then:
th=[nX(n+1)]/2
We can simplify the above general statement and arrive at:
tn =0.5n" + 0.5n

To have a correct general expression, it is essential that the statement be verified. In
order to verify, we can use the already known value of 21 dots for the 6™ stage.
Therefore, simply substitute 6 for n into the derived general statement:

LS= 0.5(6)* + 0.5(6)
RS= 21
LS =RS
For further insurance, simply substitute 3 for n into the general statement:
LS= 0.5(3)? + 0.5(3)
RS=6
LS =RS



By using advanced technology such as a graphing calculator, we can derive the
general statement that represents the n” triangular number in terms of n much faster.
The following table gives the number of evenly spaced dots in relation to the first seven
stages of the pattern.
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By plotting the first seven stages of the pattern on a graph, we can study the
relation within the pattern much more effectively.

Graph settings are as follows: X:[0, 10, 1] Y:[0, 30, 1]

The above presents the data from the previous table in graphical form. It illustrates the
relation between the stage and the number of evenly spaced dots. The stage of the
pattern is positioned on the X-axis and the number of evenly spaced dots on the Y-axis.

From this graph, we can see that the relation of the triangular pattern forms a parabola.

By undertaking regression of the data, we can easily deduce the general statement.
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With the resourceful use of calculator, we can easily deduce the general statement as:
Y = 0.5x° + 0.5x

Being a method of verification, we can use the ‘value’ function of the calculator. Let us
take into consideration that the 3™ stage contains 6 numbers of dots as shown in
previous diagram. Therefore, if the Y value equals 6 when the X value is 3, then we can
conclude that the general statement derived from the calculator is correct.

Y= B0 BN
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It is clearly indicated that the general statement generated by the graphing calculator
did in fact derive Y as 6 when X is 3. Therefore, the derived general statement through
the use of a TI-84 graphing calculator is correct.

Considering that the general statement must represent the n™ triangular number in
terms of n, the general statement derived from the calculator can be modified into the
general statement as : tn = 0.5n° + 0.5n.

After investigating the pattern of triangular geometric shapes in three different methods
that have led to the same results, we can conclude then that the general statement that
represents the n triangular number in terms of n for triangular shapes is:

tn =0.5n* + 0.5n

In other words, the n" triangular number is the sum of the half of the " stage squared
and the half of the n™ stage.

The scopes or limitations of this general statement are :

Domain: n > 10rn € N ,Range: m > 10m € N

Stellar Shapes Pattern:

After the investigation of the triangular patterns, we will now consider a more
complicated geometric shape which leads to special numbers. In the following, we will
investigate the general statement for star shapes with p vertices, leading to p-stellar
numbers (number of dots). The first six representations for a star with six vertices are
shown in the six stages S1-Sg below to better illustrate the pattern. The stellar number at
each stage is the total number of dots in the diagram.



The stellar number as a relation to the first six stages of the sequence is as follows:

Stage Stellar Number
1

13

37

73

121

181

OB WN I~

A pattern can be recognized as:

The difference of stellar number between stage 1 and2=12=2 X6
The difference of stellar number between stage 1 and 3= 36 =6 X6
The difference of stellar number between stage 1 and4 =72 =12 X6
The difference of stellar number between stage 1 and 5=120=20 X6
The difference of stellar number between stage 1 and 6 = 180 =30 X 6



The above difference between the stellar numbers of different stages can be utilized to
illustrate a relation between the stage number, the number of vertices and the stellar
number.

We can realize that the stellar number shown within the table above is one more than its
difference. For instance, the stellar number of stage 3 is 37, which is one more than the
difference between stages 1 and 3, which is 36.

The relation is illustrated below: the difference derived earlier is shown in brackets
The stellar number of S, = (2 X6)+1=(2X1X6)+1=13

The stellar number of S3=(6 X6)+1=(3X2X6)+1 =37

The stellar number of Sy= (12 X6)+1=(4 X3 X6)+1=73

The stellar number of S5=(20 X6)+1=(5 X4 X6)+1 =121

The stellar number of Sg= (30 X6)+1=(6 X5X6)+1 =181

These statements above can be utilized to invent the general statement:

Sy = stellar numbers (number of dots)
n = stage number

Taking the previously derived statement ‘The stellar number of S;= (3 X2 X 6) +1 = 37
into account, we can replace the 3 by n, replace 2 by (n-1) and replace 37 by S,.

Therefore, we arrive to the general formula as:

Sn=(n)(n-1)(6) + 1
=6n’*-6n+ 1

Since we already know that there are 121 dots for the 5™ stage, we can verify the
above general statement for six vertices stellar shape by simply substitute 5 for n into
the general statement:

The 5" stage stellar number = 6(5)> — 6(5) + 1= 121

Considering that the previous general formula for the triangular pattern is a quadratic
function, it is reasonable to assume then that this similar style of pattern will also result
in a quadratic statement. Therefore, there is a second method of deriving the general
statement for a stellar shape with 6 vertices.

Without the use of a graphing calculator, we can find the quadratic regression of the
values obtained from the diagrams to find the general statement.

Thus, we need three sets of values: X-value = n"" stage Y-value = stellar number

(1, 1) (2, 13) (3,37)



Using these points, we can generate a statement in the general form: y = ax® + bx +c

1=a+b+c 13=4a+2b+c -12=(-3)a-b
- 2
1=a(1)"+b(1) +c 13=4a+2b+c 37=9a+3b+c  -24=(-5)a-b

12=(3)a-b  -24=(-5)a-b 12 =2a

13 =a(2)’ + b(2) +c
37 =a(3)" + b(3) +c a=6 c =13 -4(6) - (2)(-6)
b =(-3)(6) + 12 =1
=-6

In conclusion, the general formula derived from using the second method in the general
formis:y = 6x% - 6x + 1. In order to keep the general statement consistent with the
general statement derived using the first method, we must express the general

statement as the S,, (stellar numbers) in terms of n (stage number). As such, the general
statement becomes: S, = 6n° — 6n +1

Now, as a third method, by using a TI-84 Plus Graphing Calculator, we can derive the
general expression much more time efficiently and conveniently.

The following table gives the number of dots (i.e. the stellar number) in relation to the
first 7 stages of the pattern.
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The result of plotting the data above is shown below:

Graph settings are the following: X:[ 0,10, 1] Y:[0, 200, 20]

The n" stage is positioned on the X-axis and the stellar number on the Y-axis.



The main observation that can be made from this graph is that it is in the shape of a
parabola similar to the previous graph that modeled the triangular pattern.

Through the use of QuadReg function in the calculator, the general statement for the 6-

stellar number pattern can be derived:

CuadkEeg
g=gx 2 +thtc
a=g
b=-&

1
=1

ralyl
ra

Since the value of R? is 1, this indicates that this general expression exactly fits to the
stellar pattern.

Therefore, the graph generated by the graphing calculator can be exactly modelled by
using the following quadratic function:

Y = 6x% - 6x + 1

We can again use the ‘value’ function of the calculator as a method of verification. Let
us take into consideration that the 3™ stage contains 37 numbers of dots as shown in
the previously shown table. Therefore, if the Y value equals 37 when the X value is 3,
then we can conclude that the general statement derived from the calculator is correct.

V1=BHz-aH+1
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It is clearly indicated that the general statement generated by the graphing calculator
did in fact derive Y as 37 when X is 3. Therefore, the derived general statement through
the use of a TI-84 graphing calculator is correct.

After altering Y with S, (stellar number) and X with n (stage number), the general
expression for a 6 vertices stellar shape becomes:

S, =6n*—6n+1

From this general statement, we can find an expression for the 6-stellar number beyond
stage 6, such as stage 7 by replacing n with 7.



We can verify the validity of this expression by using the graphing calculator.

V1=BHz-gH+1
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With the use of the Value function of the calculator, we derived the Y value as 253 when
Xis 7. In other words, the expression for the 6-stellar number at stage Sy is valid.

The same method used to find 6-stellar number at stage Sy can also be used to find the
stellar number for stage S»3 and even up to stage Sioo.
S23 = 6(23)* — 6(23) + 1 S100 = 6(100)? — 6(100) + 1
= 3037 = 59401

The use of the general statement to determine the stellar number provided much
needed convenience when dealing with stage S,3 and especially stage S1go.

Recognizing that the coefficient of 6 in the general statement ‘S, = 6n? — 6n +1’
represents the number of vertices, we can derive the general statement for other values
of vertices (p) by altering the coefficients.

Therefore, for stellar shapes with 5 vertices, the general statement then becomes:
Sn=5n?-5n+ 1

In order to verify, we can simply use diagrams of stellar shape with 5 vertices:

S1 S2 S3



In order to affirm the validity of the general statement for stellar shapes with 5 vertices,
the number of dots counted must equal the number of dots derived from the statement:

LS = number of dots derived from the statement

RS = number of dots counted in the diagram

Stage 1 Stage 2 Stage 3
LS=5(1)2-5(1) + 1 LS=5(2)%-5(2) + 1 LS=5(3)?-5(3) + 1
RS= 1 RS= 11 RS= 31
LS=RS LS =RS LS =RS

Hence, the overall general statement, in terms of p and n, which generates the
sequence of p-stellar numbers for any value of p at stage Sn is:

S,=pn®=pn+1

In order to test the validity of this general statement, we can insert numbers in place of
the variables and the parameters. In knowing that the stellar number of stage 3 for a
star shape with 6 vertices is 37; therefore, the stellar number derived from this formula
under the same circumstances should be the same.

LS =37
p=6,n=3
RS = pn®—pn + 1

=6(3)> - 6(3) + 1= 37
LS=RS
Therefore, the general statement is valid.
To determine the scope or limitations, we can begin by looking at the graph:
The graph settings are:
X[ 0,10, 1]
Y:[0, 200, 20]




The scope or limitations of the general statement in terms of geometric patterns
are: Domain: n > 10n € N ,Range: & > 105 € N .When

examining the general statement in terms of a geometric shape, the stage cannot be
smaller than 1. Because this means that when stage is 0, the number of dots will
become 1. “6(0)?> — 6(0) + 1= 1”. This is invalid and wrong because when there is no
stage there shouldn’t be any figure, therefore zero dots. As well, it is also impossible to
have a negative stage of a geometric pattern. However, the stage can be any positive
natural number for it can be 3, or even 1000. In addition, notice that the graph that
models the pattern begins when x= 1, rather than from the origin. With these reasons,
when n must be smaller and equal than 1; and is a set of natural numbers in order to
make the general statement valid. When considering the range, since the stage must
start at 1, therefore, the number of dots will also begin at 1. In addition, having a
negative number of dots is also invalid. Therefore, Sn is limited to be greater and equal
than 1, and is also a set of natural numbers. Since p is a parameter, it generally does
not have a limitation. However, in the case of a geometric pattern, p > 0 since we
cannot have a negative number of vertices in a geometric shape. As well, p cannot be 0
because the general formula would not have worked as the stellar number of every
stage will become 1. To illustrate, when we substitute O for p, the general statement
becomes 0n? — On + 1 = 1. No matter what n is, the result will always be 1. Therefore,
the derived general formula is invalid in a situation where p is 0.

Conclusion:

Through analysing the patterns, the resourcefully use of a graphing calculator, the
studying of the graphs and undertaking regression of the data, we can easily deduce
the general statement of the two geometric patterns. The general statement of the
triangular pattern is tn = 0.5n% + 0.5n where tn is the number of evenly spaced dots,
and n is the n" stage. The general statement of the stellar pattern is S, = pn® — pn + 1
where S, is the stellar number (number of dots), p is the number of vertices, and n is the
n'" stage. From the above investigation, we come to a conclusion that the general
statements for any geometric shapes which lead to special numbers are quadratic
functions with an upward concaving parabola that is only valid in the first quadrant of the
graph where the Domain: »n > 10n € N ,andRange: &% 2> 10% € N



