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Find the n'" term of a logarithmic sequence

In this portfolio | will investigate how we can use changes in the base of a logarithmic
sequence to find a general expression. We start with the fallowing logarithmic
sequences;

log, 8, logy8, logy 8, logy: 8, logy; 8,l08:48, logy.: 8

log5 81, logg 81, log,; 81, logg; 81 ,l0g45.7 81,105,705 81

lﬂgs 25, 1Dg:5 25J loglzs 25, 10%525 25, 10g3125 25 y 10%15625 25

e log,, m¥, log,.z m¥, log,,: m¥* log,s m¥,log,,s m¥, log,s m*

We can use the last sequence of the sequences above to show a pattern of the
change of base in the sequences. By using this information we can deduce the n
term of any logarithmic sequence. We can also see that the last sequence is written
with the base and the number if the logarithm both using $zraised to a power, but
the number of the logarithm, m¥, is the constant in the expression. If we look at the
pattern of the other sequences we can see that their number is also constant. The %2
exponent increases proportionally fo the term for each term it is an increase by 1.

Now that we have $2both as a base and as the number of the logarithm we can use
the change of base rule to simplify the terms:

log, A log, m*
log, A = 1 e —
088 = o5 2 8m M = Tog.m
Using the rules for logarithms we get the expression:  log,,, m* = ::3?3

The use of $z2both in the base and the number of the logarithm is a smart thing to do.
Because the log.m and log.m* in the change of base rule we can simply cancel ou t

the expressions with each other and that will leave us with E Then the sequence will

kE kk kK

look IikeI, 333 This illustrate that k in the nominator is constant and the

denominator willincrease by 1. Now both n and k is an element of any re al number.
This gives us an general statement for the nth term of the sequence.

If we convert the first sequence to the form of log,,, m*, we then geft;
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log, 23, log,z 23,logs: 23, logss 23, logss 2% We can see that the 2's in the expression

match the min the expression. It is easier to change the expression to the Eform. We

can use the change of base rule to convert the expression as you can see below.

log.g2® 3log.p2 3
loggnza — 198w _ Eis _ 2

logag 2T nlogyg2 n

We end up with a simple general statement for the n th term of the sequence. If we
want to find, let's say the 11th term, we simply replace »with 11. Now that we have
seen how to find the general statement for the nh term of a sequence, we can do
the same to the two remaining sequence using the same techniques.

lo ‘123 — 10%2023 = 3 10%202 = E
e log,y 27 nlog.;2 n

Second sequence:

loga 81J ]Dgg.sij logz? 81, logsl 81, 10g243 81J logjzg g1

We only have to look at the first ferm to find the general statement ; we can use the
remaining terms to check that our log,, m¥* formis correct. You can find the general

ferm using any two consecutive tferms from the sequence.

logz 81 = logzn3*  Using the change of base rule gives us =

Third sequence:

logs 25, logas 25, logyas 25, loggas 25, 1085125 25,10815625 25

ERE]

logs 25 = logen 52 Using the change of base rule gives us

As you may have nofticed in these examples, once vou have written the term in the
form log,,nm¥, vou can take the exponent of the number of the logarithm and the

exponent of the base and write them as a fraction with the exponent of the base as
the denominator.

Now using Microsofl Office Excel | will justify these answers by calculating the term as
itis shown and the = form that we found. | have chosen to use sequence 1 and 3,

from these it is easy to see that what we have done so far is justified:
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Justification sequence 1:

Number of

logarithm base log k/n
8 2 3 3 1 3
8 4 1,5 3 2 1.5
8 8 1 3 3 1
8 16 0.75 3 4 0,75
8 32 0.6 3 5 0.6
8 64 0,5 3 6 0.5
8 128 0,428571429 3 710,42857143
8 256 0,375 3 8 0,375
8 512 0,333333333 3 910,33333333
8 1024 0.3 3 10 0.3

Justification sequence 2:

number of

logarithm base log k/n
25 5 2 2 1 2
25 25 1 2 2 1
25 125 0,666666667 2 310,66666667
25 625 0,5 2 4 0,5
25 3125 04 2 5 0.4
25 15625 0,333333333 2 610,33333333
25 78125 0.,285714286 2 710,28571429
25 390625 0.25 2 8 0,25
25| 1953125 0,222222222 2 910,22222222
25| 9765625 0.2 2 10 0.2

As you can see the solutfions to the term in both forms orekexoc’rly the same, in other
words, what we have done, writing the terms in the form = is a correct way of writing

the term, because, as said the solutions are identical. As you can see | have

continued the sequence to the tenth term, showing that it is correct not only for the
calculations shown earlier. The formulas used in these excel sheets can be viewed in
aftachments 1 and 2 at the back of the portfolio. Let's move on to the next section.

Applying % to another pattern and its use

Now let’s try using some of our newly acquired knowledge to solve a problem

involving logarithmic sequences similar to those we have just dealt wi th. Take a look
at these four sequences:
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o log,64,log: 64, logy, 64
[ 1Dg7,r ‘4‘9J 10%49 49_, 10%343 49

e logz125,log 2 125,log = 125
s

125 625

e logg512,log, 64 ,logy, 64

If yvou look closely atf these sequences vou will notice that the terms are consecutive,
in the three first sequences certain terms have been skipped, and in the last
sequence the two first terms have been switched around. Even though these
sequences do not seem to have much in common, there is more than meets the
eve. Itis possible fo find the third answer the two first. To get an overview let’s rewrite
the terms to the form E

First sequence:

log. 64 = log;n 2% Using the exponent frick gives us E

There is one difference here from what we did earlier; the base has been changed.
This has to be taken info account when finding the pl acement of the term, as what
vou now have found is the first term. If we fill in »for each term we end up with,
notice that we use »= 2 for the first term in the sequence as we have discovered that
the actual first term is the one before :

& -3 5_ —cg, &
ﬂ=2:5=3’ n=3 3—2 n=>5, )

As YOU may see now, you can make both E using the answers to the two first terms. 6

by multiplving them and 5 by adding them; this gives a formula:

If we try to generalize this formula we start by renaming 2 and 3 as variables. As 2
and 3 are the solutfion to terms we can use the variable for an arbitrary ferm in a
sequence, Un.In this case both 2 and three come from terms in the sequence, so we
give them an identifier so we do not confuse them. For simplicit v we will use cand”s”
as these identifiers. This gives:

U, ¥ Uy
U, + Uy,

To test this new general expression let us ry it on the remaining sequences.

Second sequence:
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We have to begin by writing them in the Eform:

-]

log; 49 =log,n 77 Looking at the exponents we have

=2, n=2:

. Filling in for »gives us:

n=1: -1, n=3: -
3

B ]

SRR

Using the new formula:
U, XUy,

U, + Uy,

1x2

1+2

2
3
So far so good, let's do the rest of the sequences:

Third sequence:

_a —_—
,ni Looking atf the exponents we have :3 Filling in for »»gives us:

-]

log: 125 = log
g

Using the formula

Up, X Un,
Uy, + Un,
—3x-1_ 3
-3+ -1~ 4

Even though the minus is in front of the 4 and not the 3 it is still the same number, as
both will refurn negative.

Fourth sequence:
log; 512 = log,n 2% Looking at the exponents we have % Filing in for »»gives us:
n=3 =3, n=1:2=9, n=4 -

3 1 4

Again using the formula:

Uy, % Uy
U, + Uy,

3x9 27 9
340 12 4

Now that we have established that the formula works , we can make two more
examples of our own just fo see that it works. Before doing this it is important that vou
have noticed the pattern in the formula so far. If vou look at the »¥s that have been
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used so far you should see the pattern clearly. The sum of the »¥s of the first two terms
has always equaled the »of the third term. We can quickly discover what happens
when this presumption is noft fulfilled:

Two more examples to underline this statement:

Log, 8 logs 8 logis 16

LOgg 4096 10g64 4096 10g5|2 4096

Log, 16 =log 16 ~ log 2 =log 2* + log 2*=4+2=2
Logs 16=1og 16 + log4 =log 2* +log 2°=3+2=1.33

Logs 16 =log 16 + log 16 =log 2* ~log 2* =4 +4 =1

logs 256 =log 256 + log 4 =log4* ~log4' =4+ 1=4
logis 256 =log 256 = log 16 =log 4* + log4* =4 +2=2

loges 256 = log 256 + log 62 =log 4* ~log4*=4+3=1.33

Constant P, in this case 4, divided by the term Q of both the previous terms added together, in
this case 1 and 2, gives 4 + (1+2) =1.33

Part 3

If we start with log, x and log, x where thev equal ¢ and é(especﬁvely, let us try to
deduce a general statement that expresses log.; x in terms of ¢ and 4

We see that the base is the product of the two bases, but we only know how fo
multiply the arguments (where the x is), so let's fransform it into:

log [base x] ab. As you know, when you reverse the base and argument, vou tak e
the reciprocal of the original logarithm (in this case, log [ba se x] ab = 1/log [base ab]
X).

Now we can say that:
log [base x] ab =log [base x] a + log [base x] b
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As | mentioned before, when the base and argument are switched you take the
reciprocal, so:

log [base x]a=1/c

log [base x] b=1/d

log [base x]ab=1/c+1/d

Now let's get 1/c + 1/d into one fraction:
1/c+1/d=d/cd+c/cd=(c+d)/cd.So:

log [base x] ab = (c + d)/cd.

We want log [base ab] x, so we want the reciprocal of that fractio n:
log [base ab] x=cd / (c + d)

Restrictions: a >0, b>0, ab # 1, c # -d

About the restrictions:
logs have to have positive numbers as bases, so a >0 and b>0.

Limitations:

The base must be positive and not equal to one, so:

a>0, b >0 (because each of them also shows up alone on a lo garithm, they can't
both be negative).

Aso,ab#1->a#1/b

Finally, the argument (x) must be positive, so:

x>0
Inx
log,r=c4+== —=¢(l)
lna
Inx
log,or =d == — =d (1)
Inh
] Inx Ina
og , r = =
And we want . In(ab) Ina+Inb

So I'm going to rewrite (1) and (2) so that | can make appear lna + nb

Inea 1
(1) == =-
Inz ¢

Int 1

1')
2) Inzr d
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(1) +(2) ynatind 1. 1
Therefore : * Inx c i

Now we have found a general statement for the expression log oux in terms of ¢ and

d. Where a >0, b>0, ab # 1, ¢ # -d. We can therefore say that the general statement
cd

c+d’

is
A test of the general rule:

A=1,B=2,X=2

logix2 2 =((log2 +log 1) x (log 2+ log 2)) + ((log 2 + log 1) + (log 2 + log 2))
1=((log2+0) x (1)) x ((log 2~ 0) + (1))

1=0x1)x(0+1)

=0}

A cannot be 1.

Attachment 1;

number of

logarithm base log k n k/n

8 =241 =LOG(B16;C16) 3 1 =F16/Gl1é
8 =272 =LOG(B17:C17) 3 2 =F17/G17
8 =23 =LOG(B18;C18) 3 3 =F18/G18
8 =274 =LOG(B19:C19) 3 4 =F19/G19
8 =2A5 =LOG(B20;C20) 3 S =F20/G20
8 =2/\6 =LOG(B21;C21) 3 6 =F21/G21
8 =277 =LOG(B22;C22) 3 7 =F22/G22
8 =2/\8 =LOG(B23;C23) 3 8 =F23/G23
8 =2A9 =LOG(B24;C24) 3 9 =F24/G24
8 =2A10 =LOG(B25;C25) 3 10 =F25/G25
number of

logarithm base log k n k/n

25 =5A1 =LOG(B3;C3) 2 1 =F3/G3
25 =512 =LOG(B4;C4) 2 2 =F4/G4
25 =53 =LOG(BS5;CY) 2 3 =F5/G5
25 =5"\4 =LOG(B4;Cé) 2 4 =F6/Gé6
25 =515 =LOG(B7;C7) 2 5 =F7/G7
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25 =5A6 =LOG(B8;C8) 2 6 =F8/G8

25 =5A7 =LOG(B9;C9) 2 7 =F9/G9

25 =5/8 =LOG(B10;C10) 2 8 =F10/G10

25 =5A9 =LOG(B11;C11) 2 9 =F11/Gl11

25 =5A10 =LOG(B12;C12) 2 ] =F12/G12
Attachment 2;




