

Type 1: Investigating a sequence of Numbers

This is an investigation about series and sequences involving permutations. From a given series, I find the pattern of numbers that result from different values and use graphs to conjecture an expression from the series. By using mathematical induction and direct proof, I prove the general terms that I derived for the series.

Part 1:

The sequence of numbers $\left| a_n \right|_{n=1}^{\infty}$ is defined by

$$a_1 = 1 \times 1!$$
, $a_2 = 2 \times 2!$, $a_3 = 3 \times 3!$, ...

 \therefore From the pattern of different values of n in a_n above, I conclude that $a_n = n \times n$!

Part 2:

Let
$$S_n = a_1 + ... + a_n$$

If $n=1$
 $S_1 = a_1$ were $a_1 = 1 \times 1!$
 $S_1 = 1 \times 1!$
 $S_1 = 1$

If $n=2$
 $S_2 = a_1 + a_2$ were $a_1 = 1 \times 1!$, $a_2 = 2 \times 2!$
 $S_2 = 1 \times 1! + 2 \times 2!$
 $S_2 = 1 + (2 \times (2 \times 1))$
 $S_2 = 1 + 4$
 $S_2 = 5$

If $n=3$
 $S_3 = a_1 + a_2 + a_3$ were $a_1 = 1 \times 1!$, $a_2 = 2 \times 2!$, $a_3 = 3 \times 3!$
 $S_3 = 1 \times 1! + 2 \times 2! + 3 \times 3!$
 $S_3 = 1 + (2 \times (2 \times 1)) + (3 \times (3 \times 2 \times 1))$
 $S_3 = 1 + 4 + 18$
 $S_3 = 23$

Part 3:

From Part 2, I know that:

$$S_n = 1 + 4 + 18 + ... + n \times n!$$

To conjecture an expression of S_n , I first organize the results that are derived in Part 2 to discover a pattern in the value of S_n as n increases.

Table 1.1:

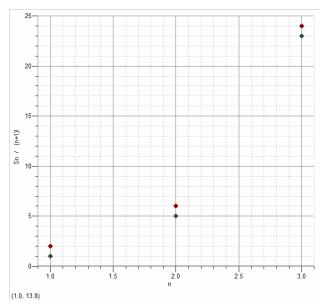
100001111		
n	a_n	S_n
1	1	1
2	4	5
3	18	23
-	1	-
-	-	-
n	$n \times n!$?

The same results of S_n from Table 1.1 can be represented as follows:

Table 1.2 :

Tuble 1.2.	
n	S_{n}
1	2-1= (1+1)! -1=1
2	6-1= (2+1)! -1=5
3	24-1= (3+1)! -1=23
-	-
-	-
n	(n+1)!-1

 \therefore From the patterns exhibited in Table 1.2, I notice that $S_n = (n+1)! - 1$ which is further illustrated in *Graph 1.1*.



In *Graph 1.1*, I plotted the graph of S_n for the first three values (*represented by green dots*) and I assumed that (n+1)! will lead to a conjecture for S_n and plotted its values for n=1,2,3 (*represented by red dots*). From the two graphs, I notice that (n+1)! is exactly 1 unit above S_n for all three points \therefore I conclude that: $S_n = (n+1)!$ -1

Graph 1.1

Part 4:

The conjecture that I derived in Part 3 for S_n can be proven through Mathematical Induction:

$$S_n \dot{s}$$
: "1 × 1!+2 × 2!+3 × 3!+... + $n \times n!$ = $(n+1)!-1$ "

(1) If n=1
LHS:
$$1 \times 1! = 1$$

RHS: $(1+1!)-1=1$
RHS=LHS= $S_1 = 1$
 $\therefore S_1$ is true

(2) If
$$S_k$$
 is true, then $1 \times 1! + 2 \times 2! + 3 \times 3! + \dots + k \times k! = (k+1)! - 1$

If k=k+1, then
$$S_{k+1} = ((k+1)+1)!-1$$

$$S_{k+1} = (k+2)!-1$$

Now,
$$S_{k+1} = 1 \times 1! + 2 \times 2! + 3 \times 3! + \dots + k \times k! + (k+1)(k+1)!$$

$$= S_k + a_{k+1}$$

$$= (k+1)! - 1 + (k+1)(k+1)!$$

$$= (k+1)! ((k+1)+1) - 1$$

$$= (k+2)! - 1 \quad \Box \quad (k+1)! ((k+1)+1) = (k+2)!$$

Thus S_{k+1} is true whenever S_k is true and S_1 is true.

 $\therefore S_n$ is true for all n

Part 5:

 \Box $a_n = n \times n$!, I use this formula to show that $a_n = (n+1)! \times n!$ is also true by simplifying $(n+1)! \times n!$ to equal $n \times n$!

$$n \times n! = (n+1)!-n!$$

= $(n+1)n!-n! \square (n+1)! = (n+1)n!$
= $n! (n+1-1)$
= $n \times n!$

$$\therefore a_n = (n+1)! - n!$$

Now, I use $a_n = (n+1)! \times n!$ to device a direct proof for the expression of $S_n = (n+1)! - 1$ that I conjectured in *Part 3*.

$$\begin{array}{ll}
\Box & a_n = (n+1)! - n ! \\
a_1 = (1+1)! - 1! = 2! - 1! \\
a_2 = (2+1)! - 2! = 3! - 2! \\
a_3 = (3+1)! - 3! = 4! - 3!
\end{array}$$

From Part 3, I know that
$$S_n = a_1 + a_2 + a_3 + a_n + a_n$$

$$\therefore S_n = 2! - 1! + 3! - 2! + 4! - 3! + n! - (n-1)! + (n+1)! - n!$$

When the first value of the first term is subtracted from the second value of the following term, 0 is derived so I cancel these terms. After I cancel the values to the most simplified manner, -1! and (n+1)! are left in the expression from which the following equation is derived:

$$S_n = (n+1)! -1$$

 \therefore The conjecture of $S_n = (n+1)! - 1$ is proven

Part 6:

From Part 5, I know that:

$$a_n = (n+1)! - n!$$

I use the equation of a_n to derive an expression for a_{n+1} by substituting n+1 for n and simplify it:

If
$$n=n+1$$
, then

$$a_{n+1} = ((n+1)+1)! - (n+1)!$$

$$= (n+2)! - (n+1)!$$

$$Let c_n = a_n + a_{n+1}$$

To express c_n in factorial notation, I substitute a_n and a_{n+1} with their equivalent factorial notation forms and simplify them:

$$c_n = (n+1)! - n! + (n+2)! - (n+1)!$$

$$c_n = (n+2)! - n!$$

$$\therefore C_n = (n+2)! - n!$$

Part 7:

Let
$$T_n = c_1 + c_2 + ... + c_n$$

If
$$n=1$$

$$T_1 = c_1$$
 were $c_1 = (1+2)! - 1!$

$$T_1 = (1+2)! - 1!$$

$$T_1 = (3 \times 2 \times 1) - 1$$

$$T_1 = 6 - 1$$

$$T_1 = 5$$

If n=2

$$T_2 = c_1 + c_2$$
 were $c_1 = (1+2)! - 1!$, $c_2 = (2+2)! \times 2!$

$$T_2 = (1+2) - 1! + (2+2)! - 2!$$

$$T_2 = (3 \times 2 \times 1) - 1 + (4 \times 3 \times 2 \times 1) - (2 \times 1)$$

$$T_2 = (6-1) + (24-2)$$

$$T_2 = 5 + 22$$

$$T_2 = 27$$

If n=3

$$T_3 = c_1 + c_2 + c_3$$
 were $c_1 = (1+2)! - 1!$, $c_2 = (2+2)! \times 2!$, $c_3 = (3+2)! \times 3!$

$$T_3 = (1+2) - 1! + (2+2)! - 2! + (3+2)! - 3!$$

$$T_3 = (3 \times 2 \times 1) - 1 + (4 \times 3 \times 2 \times 1) - (2 \times 1) + (5 \times 4 \times 3 \times 2 \times 1) - (3 \times 2 \times 1)$$

$$T_3 = (6-1) + (24-2) + (120-6)$$

$$T_3 = 5 + 22 + 114$$

$$T_3 = 141$$

Part 8:

From Part 7:

$$T_n = c_1 + c_2 + \dots + c_n$$

 $T_n = 5 + 22 + 114 \dots + (n+2)! - n!$

To conjecture an expression of T_n , I first organize the results that are derived in Part 7 to discover a pattern in the value of T_n as n varies.

Table 2.1:

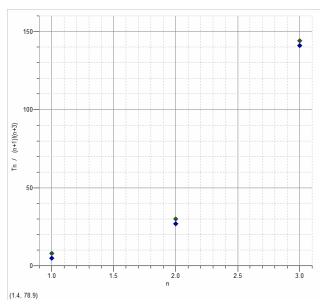
n	C_n	T_n
1	5	5
2	22	27
3	114	141
-	-	-
-	-	-
n	(n+2)!-n!	?

The same results of T_n from Table 2.1 can be represented as follows:

Table 2.2:

n	T_n
1	$2 \times 4 - 3 = 5 = (1+1)!(1+3) - 3$
2	$6 \times 5 - 3 = 27 = (2+1)!(2+3) - 3$
3	$24 \times 6 - 3 = 141 = (3+1)!(3+3) - 3$
-	-
-	-
n	(n+1)!(n+3)-3

Thus, from the pattern exhibited in Table 2.2, I notice that $T_n = (n+1)!(n+3) - 3$ which is further illustrated by *Graph 2.1*.



In Graph 2.1, I plotted the graph of T_n for the first three values (represented by blue dots) and I assumed that (n+1)!(n+3) will lead to a conjecture for formula for S_n and plotted its values for n=1,2,3 (represented by green dots). From the two graphs, notice (n+1)!(n+3)is exactly greater by 3 units to T_n for all three points conclude that: S_n (n+1)!(n+3)-3

Graph 2.1

Part 9:

The conjecture that I derived in Part 7 for T_n can be proven through Mathematical Induction:

$$T_n$$
 is: $c_1 + c_2 + ... + c_n = (n+1)!(n+3) - 3$
 $T_n = (1+2)! - 1! + (2+2)! - 2! + ... + (n+2)! - n! = (n+1)!(n+3) - 3$

(1) If n=1

LHS:
$$c_1$$
= (1+2)!-1!
= 5

RHS: (1+1)!(1+3) - 3 = 5

LHS = HLS = T_1 = 5

 T_1 is true

(2) If T_k is true, then

$$c_1 + c_2 + ... + c_k = (k+1)!(k+3) - 3$$

(1+2)!-1! + (2+2)!-2! + ... + (k+2)!-k!= (k+1)!(k+3) - 3

If k=k+1, then
$$S_{k+1} = ((k+1)+1)! ((k+1)+3) - 3$$

$$S_{k+1} = (k+2)! (k+4) - 3$$

Now,
$$S_{k+1} = S_k + c_{k+1}$$

$$= (k+1)! (k+3) - 3 + (k+3)! - (k+1)!$$

$$= (k+1)! ((k+3)-1) - 3 + (k+3)!$$

$$= (k+1)! (k+2) - 3 + (k+3)!$$

$$= (k+2)! (k+4) - 3 \square (k+1)! (k+2) + (k+3)! = (k+2)! (k+4)$$

Thus T_{k+1} is true whenever T_k is true and T_1 is true.

 T_n is true for all n

Conclusion:

Through this investigation, I have developed my knowledge about series and sequences involving permutations. I have learnt to use the patterns in a series to conjecture an expression for it and I had an opportunity to utilize my awareness of mathematical induction into proving the general term for the series. Most importantly, I have learnt to use technology related to series involving permutations. I enjoyed this investigation.