

Math Portfolio Infinite Surds

Introduction

a surd is an irrational number that can not be written as a fraction of two integers but can only be expressed using the root sign. Bellow an example of an infinite surd:

$$\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+...}}}}}$$

This surd can be turned into a set of particular numbers **sequence**:

As we can see there are ten terms of this sequence where a_n is the general term of the sequence when n = 1, a_1 is the first term of the sequence...Etc.

A formula has been defined for a_{n+1} in terms of a_n :

$$a_{n+1} = \sqrt{1 + a_n}$$
 (1)

A graph has been plotted to show the relation between n and a_n . And it can be oticed that as long as n gets larger, a_n gets closer to a fixed value.

To investigate more about this fixed value we take this equation $a_n - a_{n+1}$ into

consideration as n gets bigger.

n	a_n - a_{n+1}
1	- 0.13956
2	-0.04428
3	-0.01380
4	-0.00427
5	-0.00132
6	-0.00040
7	-0.00013
8	-0.00004
9	-0.00001

We can figure out from the table above that when n gets larger, the term (a_n+a_{n+1}) gets closer to zero but it never reaches it

So we can come to the conclusion:

When *n* approaches infinity, $lim(a_n-a_{n+1}) \rightarrow 0$

An expression can be obtained in the case of the relation between n and a_n to get the exact value of the infinite surd:

$$\lim_{n\to\infty}a_n=x$$

If we apply formula (1) to this:

$$x = \sqrt{1 + a_n} \to x = \sqrt{1 + x}$$

$$x^2 = 1 + x \rightarrow x^2 - x - 1 = 0$$

The equation can be solved using the solution of a quadric equation:

$$ax^{2} + bx + c = 0 \Rightarrow x = \frac{-b \pm \sqrt{b^{2} - 4ax}}{2a}, a \neq 0$$

Whereas a=1, b=-1, c=-1

Two solutions for x were obtained:

x=1.618033989 and x=-0.61803387

The negative value is ignored so x=1.618033989 which is the exact value for this infinite surd.

Another condition of infinite surd can be taken into consideration to acknowledge the point more:

$$\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-1}}}}$$
 Where the first term of the sequence is $\sqrt{2+\sqrt{2}}$

The first ten terms of the sequence are:

$$h_1 = \sqrt{2 + \sqrt{2}} \approx 1.847759065$$

$$h_2 = \sqrt{2 + \sqrt{2 + \sqrt{2}}} \approx 1.961570561$$

$$h_3 = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2}}}} \approx 1.990369453$$

$$h_4 = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2}}}} \approx 1.997590912$$

$$h_5 = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2}}}}} \approx 1.999397637$$

$$h_6 = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2}}}}}} \approx 1.999849404$$

$$h_7 = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2}}}}}}} \approx 1.999962351$$

$$h_8 = \sqrt{2 + \sqrt{2}}}}}}}} \approx 1.999990588$$

$$h_9 = \sqrt{2 + \sqrt{4 + \sqrt{2 + \sqrt{2 + \sqrt{4 + \sqrt{2 + \sqrt{2 + \sqrt{4 + \sqrt{4$$

$$h_{I0} = \sqrt{2 + + \sqrt{2 + \sqrt{2 + \sqrt{4 + + \sqrt{4 + \sqrt{4 + \sqrt{4 + \sqrt{4 + \sqrt{4 + + \sqrt{4 + \sqrt{4 + \sqrt{4 + \sqrt{4 + \sqrt{4 + +$$

And the formula of the sequence is obtained according to b_{n+1} which is relative to the term b_n :

$$b_{n+1} = \sqrt{2 + b_n}$$

The graph bellow shows the relation

It can be observed that when n gets bigger, b_n attempt to reach the value 2 which is the exact value for this infinite surd.

$$\lim_{n\to\infty}b_n=2$$

To prove that 2 is the exact value an expression is used:

Where x =exact value

$$x = \sqrt{\frac{2+b_n}{x}} \Rightarrow x^2 = 2+x \Rightarrow x^2 - x - 2 = 0$$

$$(x-2)(x+2) = 0$$

$$x = 2$$

$$x = -2$$

Since only the positive value is concerned then x=2 which is the exact value for the infinite surd.

Now we think about a general infinite surd to prove our previous work.

We consider the general infinite surd as: $\sqrt{k + \sqrt{k + \sqrt{k + \sqrt{k}}}}$

Now let
$$x = \sqrt{k + \sqrt{k + \sqrt{k + \sqrt{k}}}}$$
 ...

Squaring both sides

$$x^2 = k + \sqrt{k + \sqrt{k + \sqrt{k + \sqrt{k}}}}$$

$$x^2 = k + x$$

 x^2 - x - k=0 \leftarrow the expression for the exact value of the general infinite surd A general statement could be found to make the expression an integer, and its be solving the equation above using the solution of a quadric equation:

$$ax^{2} + bx + c = 0 \Rightarrow x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}, a \neq 0$$

The negative solution is ignored so:

$$x = \frac{1 + \sqrt{1 + 4k}}{2}$$

To find some values of *k* to make the expression an integer:

We can see that 4k is an even number and 4k+1 is odd, so $\sqrt{1+4k}$ is an odd number if 4k+1 is a perfect square hence $1+\sqrt{1+4k}$ is an even number and possible to be divided by 2. As a result if 4k+1 is a perfect square we can obtain an integral number in the result.

For example let k=2:

$$\frac{1+\sqrt{9}}{2}=2$$

$$k=3$$

$$\frac{1+\sqrt{B}}{2} \approx 2.33$$
 \leftarrow not integer because 13 is not a perfect square

Thus we come to the conclusion that only limited values of k can be used to make the result an integer and those values are any value of k can make 4k+1 a perfect square such as k = 2,6,12...etc.