

Portfolio assignment:

Infinite Surds

Lauren Kelly Mr. Bell IB Math MHF 4UB

First of all, roots that are irrational are called surds.

The following expresion is an example of an infinite surd:

$$\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\dots}}}}$$

From the previous expresion, generally know as an **infinite surd**, we can create the following sequence:

$$a_{1} = \sqrt{1 + \sqrt{1}} = 1,414213$$

$$a_{2} = \sqrt{1 + \sqrt{1 + \sqrt{1}}} = 1,553773$$

$$a_{3} = \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1}}}} = 1,598053$$

$$a_{5} = \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1}}}}} = 1,616121$$

$$a_{4} = \sqrt{1 + + + \sqrt{1 + + + + \sqrt{1 + + + + \sqrt{1 + +$$

From theses first ten terms of the sequence we can derive a formula for a_{n+1} in terms of a_n . The formula is:

$$a_{n+1} = \sqrt{1 + a_n}$$

By plotting the first ten terms of the sequence on a graph, we can study the relation between $a_n - a_{n+1}$.

Graph 1 This illustrates the relation between n and L in the case of $L = a_n$.

From this graph we can see that the value of L is slowly moving towards the value of aprox. 1,618, but the value of L will never attain this value. If we look at the relation between a_n and a_{n+1} we can establish that in the case of $a_n - a_{n+1}$. $a_n - a_{n+1}$, when n approaches infinity, $\lim(a_n - a_{n+1}) \to 0$

We can expand this and arrive at another infinite surd with a sequence of:

$$b_1 = \sqrt{2 + \sqrt{2}}$$

We can take this sequence and expand it:

$$b_1 = \sqrt{2 + \sqrt{2}} = 1,847759065$$

 $b_2 = \sqrt{2 + \sqrt{2 + \sqrt{2}}} = 1,961570561$

$$b_{3} = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2}}}} = 1,990369453$$

$$b_{4} = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2}}}} = 1,997590912$$

$$b_{5} = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2}}}}} = 1,999397637$$

$$b_{6} = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2}}}}} = 1,999849404$$

$$b_{7} = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2}}}}} = 1,9999849404$$

$$b_{8} = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2}}}}}} = 1,999999588$$

$$b_{9} = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2}}}}}} = 1,9999997647$$

$$b_{10} = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2}}}}}}} = 1,9999999412$$
ETC...

Graph 2
This graph illustrates G in the case of an.

From this graph we can clearly see that a_n approaches the value of 2, but it never arrives at 2.

Now consider:

$$x = \sqrt{k + \sqrt{k + \sqrt{k \dots k + \sqrt{k \dots k$$

As we are dealing with an infinite surd, we can expand this out to get:

$$x^{2} = k + x$$

 $0 = k + x - x^{2}$
 $0 = (x + k)(x - k)$

This can be expressed as:

$$(x+2)(x-2) = 0$$

From this we can determine:

$$\begin{aligned}
x - 2 &= 0 \\
x &= 2
\end{aligned}$$

Comparing this with our graph, we can conclude that our general term is correct!