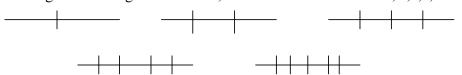


How many pieces?

Mathematics can be considered to be the study of patterns. A useful ability in math can be forming a rule to describe a pattern. Of course any rule that we develop must be true in all relevant cases. In this essay, I am going to investigate the maximum number of pieces obtained when n-dimensional object is cut, and then prove it is true.

♦ One-dimensional object

Processing: Find the maximum number of segments that can be cut in n-cuts of a line segment. To begin the solution, consider the results for n=1, 2,3,4,5.



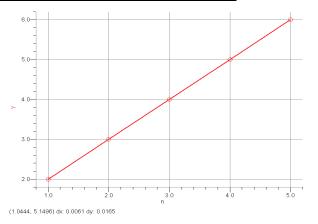
Let S represent the maximum number of segments in n-cuts of a line segment. The value for S is shown in the table.

1110 (01000 10	The value for a la and vin in the two ter							
n	1	2	3	4	5			
S	2	3	4	5	6			

Plotting the points related to the variables n and S, suggests that the relationship between them could be linear, and so we might assume that S=kn+1.

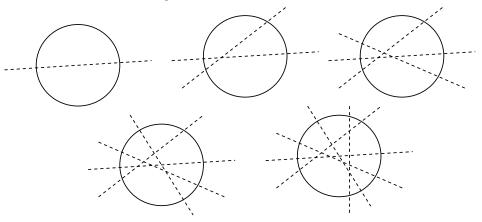
Substituting the first value for n gives: n=1, 2=k+1, k=1

Therefore, the rule which related the maximum number of segments obtained from n cuts is S=n+1.



♦ Two-dimensional object

Processing: Find the maximum number of regions that can be obtained when n chords are drawn. To begin the solution, consider the results for n=1, 2,3,4,5.



Let \mathbf{R} represent the maximum number of pieces in n-cuts of a line segment. The value for \mathbf{R} is shown in the table.

n	1	2	3	4	5
R	2	4	7	11	16

(1) Recursive rule:

$$R_1=2$$

$$R_2 = 4 = 2 + 2$$

$$R_3 = 7 = 4 + 3$$

$$R_4 = 11 = 7 + 4$$

$$R_5 = 16 = 11 + 5$$

$$R_n = R_{n-1} + n$$

Assume that $R_0=1$, then $R_n=1+1+2+3+\cdots+n$

$$R_n = 1 + (1 + 2 + 3 + \cdots + n)$$

$$=1+2+3+\cdots+n=n/2[2a+(n-1)*d], a=1, d=1$$

$$\Rightarrow$$
 1+2+3+······+n=n/2[2+(n-1)]=n/2[n+1]=(n^2+n)/2

Therefore, the rule to generate the maximum number of regions is $1 + (n^2 + n)/2 = (n^2 + n + 2)/2$.

When n=5, R_5 = $(5^2+5+2)/2=16$, which corresponds to the tabulated value for n=5 above.

$$R=(n^2+n+2)/2$$

②A conjecture for the relationship between the maximum number of regions(R) and the number of chords(n).

Use graphical analysis to sketch the graph related to the variables n and R suggests that the relationship between them could be quadratic, and so we might assume that

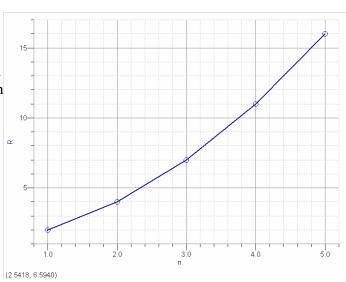
R=an²+bn+c

Substituting the first three values for n gives:

$$n=1 \Rightarrow 2=a+b+c$$

$$n=2 \Rightarrow 4=4a+2b+c$$

$$n=3 \Rightarrow 7=9a+3b+c$$



Solve these three equations for

a, b, c gives

$$a=1/2, b=1/2, c=1$$

Thus $R_n = 1/2n^2 + 1/2n + 1$

When n=5, $R_5=1/2*5^2+1/2*5+1=16$, which is also corresponds to the tabulated value for n=5 above.

$$\mathbf{R_n} = 1/2\mathbf{n}^2 + 1/2\mathbf{n} + 1$$

 $R_n = 1/2n^2 + 1/2n + 1$ is the same with $R_n = (n^2 + n + 2)/2$

So far we have formed a conjecture that the maximum number of regions from n-chords is given by $R = (n^2 + n + 2)/2$.

Proof:

Let P(n) be the proposition that the maximum number of regions that can be separated from n-chords is given by $R = (n^2+n+2)/2$ for $n \ge 0$

Step1: P(n) is true for n=1 as $R= (1^2+1+2)/2=2$ which is the maximum number of regions from 1 chord.

Step2: Assume that P(n) is true for a k-chords circle i.e., that $R_k = (k^2 + k + 2)/2$. We consider the effect that adding an extra cut will have on the result.

Step3: Looking at the tabulated value for n and R, you will found that adding an extra chord to a circle produces an extra (n+1) regions, so that we can say that

$$R_{k+1}=R_k+$$
 the extra regions added by the extra chords.
 $=R_k+(k+1)$
 $=(k^2+k+2)/2+(k+1)$
 $=(k^2+3k+4)/2$

 $(k^2+3k+4)/2$ is the $(k+1)^{th}$ assertion

Step4: Therefore, if the proposition is true for n=k, then it is true for n=k+1. As it is true for n=1, then it must be true for n=1+1=2. As it is true for n=2 then it must hold for n=2+1=3 and so on for all integers $n \ge 0$.

That is, by the principle of mathematical induction. P(n) is true.

Now we try to rewrite the formula in the form R=X+S, when X is an algebraic expression in n:

n	1	2	3	4	5
S	2	3	4	5	6

n	1	2	3	4	5
R	2	4	7	11	16

Compare these two tables, we can find out that

 $R_2 = R_1 + S_1 = 2 + 2 = 4$

 $R_3 = R_2 + S_2 = 4 + 3 = 7$

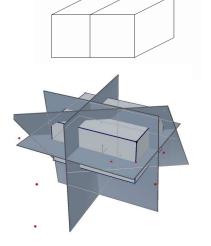
 $R_4 = R_3 + S_3 = 7 + 4 = 11$

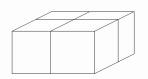
 $R_5 = R_4 + S_4 = 11 + 5 = 16$

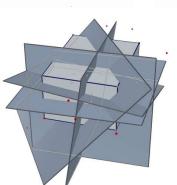
Thus $R=X+(n+1) \Rightarrow X=R-(n+1) \Rightarrow X=(n^2-n)/2$

Therefore, $R=X+S=(n^2-n)/2+(n+1)$

♦ Three-dimensional object







n	1	2	3	4	5
P	2	4	8	15	26

①Recursive rule:

$$P_1 = 2 = R_1$$

 $P_2 = 4 = 2 + 2$

$$P_2 = 4 = 2 + 2 = R_1 + P_1$$

$$P_3 = 8 = 4 + 4 = R_2 + P_2$$

Thus
$$P_n = P_{n-1} + R_{n-1}$$

$$= P_{n-2} + R_{n-2} + \cdots + R_{n-1}$$

$$\begin{split} &=P_{n\text{-}(n\text{-}1)}+R_{n\text{-}(n\text{-}1)}+R_{n\text{-}2}+\cdots\cdots+R_{n\text{-}1}\\ &=P_1+R_1+R_2+R_3+\cdots\cdots+R_{n\text{-}1}\\ &=2+(1^2+1+2)/2+(2^2+2+2)/2+\cdots\cdots+(n^2+n+2)/2\\ &=2+(n\text{-}1)+[1^2+2^3+3^3+4+\cdots\cdots+n^3+(n\text{-}1)]/2\\ &=n+1+(n\text{-}1)^3+n^3+(n+1)]/(3^3+2)\\ &=(n^3+5n+6)/6 \end{split}$$

Therefore, the recursive rule to generate the maximum number of parts is $\frac{(n^3+5n+6)}{6}$

When n=5, P_5 = $(5^3+5^*5+6)/6=16$, which corresponds to the tabulated value for n=5 above.

$$P_n = (n^3 + 5n + 6)/6$$

②A conjecture for the relationship between the maximum number of parts(P) and the number of cuts(n).

Use TI-84 to sketch the graph related to the variables n and P suggests that the relationship between them could be cubic, and so we might assume that

$$P=an^3+bn^2+cn+d$$

Substituting all the values for n gives:

$$n=1 \Rightarrow 2=a+b+c+d$$

$$n=2 \Rightarrow 4=8a+4b+2c+d$$

$$n=3 \Rightarrow 8=27a+9b+3c+d$$

$$n=4 \Rightarrow 15=64a+16b+4c+d$$

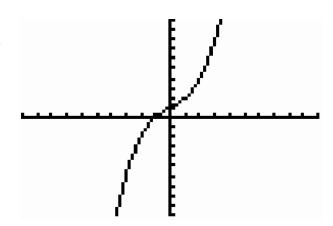
$$n=5 \Rightarrow 26=125a+25b+5c+d$$

Solve these five equations for

a, b, c, d gives

$$a=1/6$$
, $b=0$, $c=5/6$, $d=1$

Thus
$$P_n = 1/6n^3 + 5/6n + 1$$



When n=5, $P_5=1/6*5^3+5/6*5+1$, which is also corresponds to the tabulated value for n=5 above.

$$P_n = 1/6n^3 + 5/6n + 1$$

$$P_n = (n^3+5n+6)/6$$
 is the same with $P_n = 1/6n^3+5/6n+1$

So far we have formed a conjecture that the maximum number of parts from n-cuts is given by $P_n = (n^3+5n+6)/6$.

Proof:

Let T(n) be the proposition that the maximum number of parts that can be separated from n-cuts is given by $P = (n^3+5n+6)/6$ for n>0

Step1: T(n) is true for n=1 as P= $(1^3+5+6)/6=2$ which is the maximum number of parts from 1 cut.

Step2: Assume that T(n) is true for a k-cuts cuboid i.e., that $P_k = (k^3 + 5k + 6)/6$. We consider the effect that adding an extra cut will have on the result.

Step3: Looking at the tabulated value for n and P, you will found that adding an extra cut to a cuboid produces an extra $(n^2+n)/2$ parts, so that we can say that

 $P_{k+1}=P_k+$ the extra parts added by the extra cuts.

$$=P_k+(k^2+k+2)/2$$

$$= (k^3+5k+6)/6 + (k^2+k+2)/2$$

$$= (k^3+3k^2+8k+12)/6$$

Step4: $(k^3+3k^2+8k+12)/6$ is the $(k+1)^{th}$ assertion

Therefore, if the proposition is true for n=k, then it is true for n=k+1. As it is true for n=1, then it must be true for n=1+1=2. As it is true for n=2 then it must

hold for n=2+1=3 and so on for all integers n>0.

That is, by the principle of mathematical induction. T (n) is true.

Now we try to rewrite the formula in the form P=Y+X+S where Y is an algebraic expression in n:

n	1	2	3	4	5
S	2	3	4	5	6
n	1	2	3	4	5
R	2	4	7	11	16
n	1	2	3	4	5

P	2	4	8	15	26

Compare these three tables, we can find out that

$$P_2 = R_1 + P_1 = 2 + 2 = 4$$

$$P_3 = R_2 + P_2 = 4 + 4 = 8$$

$$P_4 = R_3 + P_3 = 7 + 8 = 15$$

$$P_5 = R_4 + P_4 = 11 + 15 = 26$$

$$\Rightarrow$$
 P=Y+X+S=Y+ (n^2-n)/2+ (n+1)

$$\Rightarrow$$
 Y=P-(n^2-n)/2+(n+1)

$$= (n^3+5n+6)/6-[(n^2-n)/2+(n+1)]$$

$$= (n^3+5n+6)/6-(n^2+n+2)/2$$

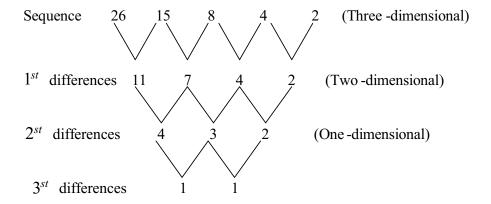
$$= n^3-3n^2+2n$$

Therefore,
$$P=Y+X+S=(n^3-3n^2+2n)+(n^2-n)/2+(n+1)$$

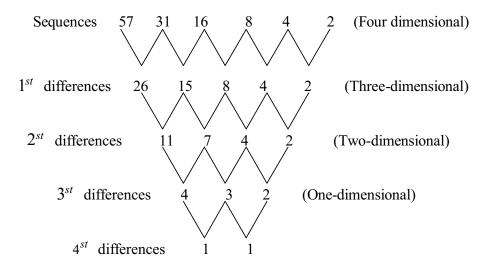
n Object	One-dimensional	Two-dimensional	Three-dimensional
1	2	2	2
2	3	4	4
3	4	7	8
4	5	11	15
5	6	16	26

Four-d imensi onal object

Looking at the spreadsheet's value of different dimensional object for n, form a difference array, you will found that



As we found that all the dimensional objects separated into 2 parts when n=1, therefore when n=1, $Q_1=2$. Use the difference array again to find out the results of the four-dimensional.



The results is shown below in a table:

n	1	2	3	4	5	6
Q	2	4	8	16	31	57

①A conjecture for the relationship between the maximum number of parts(Q) and the number of cuts(n) in a four-dimensional object. As it is a four-dimensional object, so we might assume that

$$Q = an^4 + bn^3 + cn^2 + dn + e$$

Substituting all the values for

n gives:

 $n=1 \Rightarrow 2=a+b+c+d+e$

 $n=2 \Rightarrow 4=16a+8b+4c+2d+e$

 $n=3 \Rightarrow 8=81a+27b+9c+3d+e$

 $n=4 \Rightarrow 16=256a+64b+16c+4d+e$

 $n=5 \Rightarrow 31=625a+125b+25c+5d+e$

 $n=6 \Rightarrow 57=1296a+216b+36c+6d+e$

Solve these six equations for

a, b, c, d, e gives

a=1/24, b=-1/12, c=11/24, d=7/12, e=1

Thus $Q_n = Q_n = 1/24 * n^4 - 1/12 * n^3 + 11/24 * n^2 + 7/12 * n + 1$.

When n=6, $Q_6=1/24*6^4-1/12*6^3+11/24*6^2+7/12*6+e=57$ which is also corresponds to the tabulated value for n=6 above.

$$Q_n = 1/24 * n^4 - 1/12 * n^3 + 11/24 * n^2 + 7/12 * n + 1$$

Proof:

Let W (n) be the proposition that the maximum number of parts that can be separated from n-cuts in a four-dimensional object is given by

$$Q_n = 1/24 * n^4 - 1/12 * n^3 + 11/24 * n^2 + 7/12 * n + 1$$

Step1:W(n) is true for n=1 as $Q_1 = 1/24*1^4 - 1/12*1^3 + 11/24*1^2 + 7/12*1 + 1 = 2$

which is the maximum number of parts from 1 cut.

Step2: Assume that W(n) is true for a k-cuts four-dimensional boject i.e.,

that $Q_k = 1/24 * k^4 - 1/12 * k^3 + 11/24 * k^2 + 7/12 * k + 1$. We consider the effect

that adding an extra cut will have on the result.

Step3: Looking at the tabulated value for n and P, you will found that adding an extra cut to a four-dimensional object produces an extra $(n^3+5n+6)/6$ parts, so that we can say that

$$\begin{aligned} Q_{k+1} &= Q_k + \text{ the extra parts added by the extra cuts.} \\ &= Q_k + (n^3 + 5n + 6)/6 \\ &= 1/24 * k^4 - 1/12 * k^3 + 11/24 * k^2 + 7/12 * k + 1 + (n^3 + 5n + 6)/6 \\ &= (n^4 + 2n^3 + 11n^2 + 34n + 48)/24 \end{aligned}$$

Step4: $(n^4+2n^3+11n^2+34n+48)/24$ is the $(k+1)^{th}$ assertion

Therefore, if the proposition is true for n=k, then it is true for n=k+1. As it is true for n=1, then it must be true for n=1+1=2. As it is true for n=2 then it must hold for n=2+1=3 and so on for all integers n>0.

That is, by the principle of mathematical induction. W (n) is true.

Now we try to rewrite the formula in the form Q=Z+Y+X+S where Z is an algebraic expression in n:

n	1	2	3	4	5
S	2	3	4	5	6
n	1	2	3	4	5

R	2	4		7	11		16
n	1	2		3	4		5
P	2	4		8	15		26
n	1	2	3	4		5	6
Q	2	4	8	16	5	31	57

Compare these four tables, we can find out that

$$Q_2=P_1+Q_1=2+2=4$$

$$Q_3 = P_2 + Q_2 = 4 + 4 = 8$$

$$Q_4=P_3+Q_3=7+8=15$$

$$Q_5 = P_4 + Q_4 = 11 + 15 = 26$$

$$\Rightarrow$$
 Q=Z+Y+X+S=Z+ (n^3-3n^2+2n) + (n^2-n)/2+ (n+1)

$$\Rightarrow$$
 Z=Q-(n^3-3n^2+2n) + (n^2-n)/2+ (n+1)

=1/24*
$$n^4$$
-1/12* n^3 +11/24* n^2 +7/12* n +1 — [(n^3 -3 n^2 +2 n)+(n^2 - n)/2+

$$(n+1) (n^3+5n+6)/6-(n^2+n+2)/2$$

$$=(n^4-26n^3+71n^2-46n)/24$$

=Therefore, Q=Z+Y+X+S= $(n^4 - 26n^3 + 71n^2 - 46n)/24 + (n^3 - 3n^2 + 2n) + (n^2 - n)/2 + (n+1)$

很好! 很独特的方法来找到四维的结论。

既然找到了每个维度的结果之间的关系"DIFFERENCE ARRAY",相信你也能很顺利的得到五维、六维甚至更高维度空间的结论。那么能不能找到一个更一般的结论,适用于任何维度呢?好好思考下。

http://tieba.baidu.com/f?kz=280407483

Your information?

$$d_m = C_m^n + C_{m-1}^n + C_{m-2}^n + \dots + C_4^n + C_3^n + C_2^{n+1} + 1.4$$

In 2-dimension we can get
$$R = \frac{n(n+1)}{2} + 1$$

In 3-dimension we can get
$$P = \frac{n(n-1)(n-2)}{6} + \frac{n(n+1)}{2} + 1$$

In 4-dimension we can get
$$Q = \frac{n(n-1)(n-2)(n-3)}{24} + \frac{n(n-1)(n-2)}{6} + \frac{n(n+1)}{2} + 1$$

And we can rewrite the function as:

In 2D: R =
$$\frac{n(n+1)}{2} + 1$$

$$=C_2^{n+1}+1+1$$

In 3D: P=
$$\frac{n(n-1)(n-2)}{6} + \frac{n(n+1)}{2} + 1$$

In 4D: Q=
$$\frac{n(n-1)(n-2)(n-3)}{1\times2\times3\times4}$$
+ $\frac{n(n-1)(n-2)}{6}$ + $\frac{n(n+1)}{2}$ +1+0

$$=C_4^n+C_3^n+C_2^{n+1}+1$$

M

ARK:
$$1+2+5+5+3+1=1$$
 7 (满分 20)