IBHL 2 Math

Parabola Investigation

In this investigation, relationships between the points of intersection of a parabola and two different lines were examined.

First, the parabola $f(x) = (x-3)^2 + 2$ and the lines g(x) = x and h(x) = 2x were used as an example.

As seen on the adjacent graph, the points of intersection were labeled left to right as x_1 , x_2 , x_3 , and x_4 .

Using a graphing calculator, these values were found:

$$x_1=1.764$$
, $x_2=2.382$, $x_3=4.618$, and $x_4=6.234$.

At this point, x_1 was subtracted from x_2 , and x_3 from x_4 , and the resulting numbers were labeled S_L and S_R respectively:

$$2.32 \quad -1.74 \quad = S_L = 0.66$$

$$6.24 - 4.68 = S_R = 1.66$$

After this, a value D was found:

$$D = |S_L - S_R|$$

$$D = |0.666 - 1.666|$$

$$D = |-1|$$

$$D = 1$$

To further investigate this relationship, I followed this same process with many different parabolas and lines. These lines and their values are shown in the table below (Figure 2.1). A graph of the displayed functions is below this (Figure 2.2). An explanation for each significant situation is provided below Figure 2.2.

Figure 2.1

Figure 2.1						
Situation #	f(x)	g(x)	h(x)	D		
2	$(x-7)^2+4$	х	2 <i>x</i>	1		
3	$\frac{1}{4}(x-8)^2+9$	х	2 <i>x</i>	4		
4	$\frac{1}{2}(x-5)^2+1$	X	2 <i>x</i>	2		
5	$5(x-3)^2+2$	х	2 <i>x</i>	$\frac{1}{5}$		
6	$-3(x-7)^2+26$	X	2 <i>x</i>	$\frac{1}{3}$		
7	$\sqrt{2}(x-5)^2+4$	X	2x	$\frac{1}{\sqrt{2}}$		
8	$\sqrt{2}(x+4)^2-11$	x	2 <i>x</i>	$\frac{1}{\sqrt{2}}$		
9	$-8(x+5)^2-5$	x	2 <i>x</i>	$\frac{1}{8}$		
10	$-\frac{3}{2}(x)^2 + \frac{5}{2}$	X	2x	$\frac{2}{3}$		

Situation 3: This situation caused me to hypothesize the conjecture that $D = A^{-1}$, where A is the A value from the equation $f(x) = A(x - B)^2 + C$. In addition, g(x) was tangent to f(x) at the point (10,10). This meant that x_2 and x_3 were the same (10), and showed that the conjecture held true for tangents.

Situation 6: A concave down parabola in the 1st quadrant still holds the conjecture, provided that the conjecture is changed to $D = |A^{-1}|$

Situation 7: Irrational A values work for the conjecture.

Situation 8: A concave up parabola in the third quadrant works.

Situation 9: An f(x) that is concave down in the third quadrant works.

Situation 10: Intersections in both 1^{st} and 3^{rd} quadrants work as long as the intersections of one line are x_2 and x_3 , and the intersections of the other line are x_1 and x_4 .

After situation 10, I proved my conjecture that when the lines g(x)=x and h(x)=2x intersect the parabola $f(x) = A(x-B)^2 + C$, the value of D is $\frac{1}{4}$

$$f(x) = A(x - B)^2 + C = Ax^2 - 2Ax + AB^2 + C$$

 $f(x) = g(x)$

$$\therefore Ax^2 - 2ABx + AB^2 + C = x$$

$$\therefore Ax^2 + x(-2AB - 1) + AB^2 + C = 0$$

Using the quadratic formula $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$, I found the intersections of lines f(x) and g(x): x_2 and x_3 .

$$a = A$$

$$b = (-2B - 1)$$

$$c = (B^{2} + C)$$

$$\therefore \frac{2B + 1 \pm \sqrt{(-2B - 1)^{2} - 4(A)(B^{2} + C)}}{2A}$$

$$\therefore \frac{2B + 1 \pm \sqrt{4A^{2}B^{2} + 4B + 1 - 4A^{2}B^{2} - 4AC}}{2A}$$

$$\therefore \frac{2B + 1 \pm \sqrt{4B + 1 - 4AC}}{2A}$$

$$x_{2} = \frac{2B + 1 - \sqrt{4B + 1 - 4AC}}{2A}$$

$$x_{3} = \frac{2B + 1 + \sqrt{4B + 1 - 4AC}}{2A}$$

Using the same method, x_1 and x_4 could also be found.

$$a = A$$

$$b = (-2B - 2)$$

$$c = (B^{2} + C)$$

$$\therefore \frac{2B + 2 \pm \sqrt{(-2B - 2)^{2} - 4(A)(B^{2} + C)}}{2A}$$

$$\therefore \frac{2B + 2 \pm \sqrt{4A^{2}B^{2} + 8B + 4 - 4A^{2}B^{2} - 4AC}}{2A}$$

$$\therefore \frac{2B + 2 \pm \sqrt{8B + 4 - 4AC}}{2A}$$

$$\therefore \frac{2B + 2 \pm \sqrt{8B + 4 - 4AC}}{2A}$$

$$x_{1} = \frac{2B + 2 - \sqrt{8B + 4 - 4AC}}{2A}$$

$$x_{4} = \frac{2B + 2 + \sqrt{8B + 4 - 4AC}}{2A}$$

$$\therefore S_{t} = \frac{2B + 1 - \sqrt{4B + 1 - 4AC}}{2A} + \sqrt{8B + 4 - 4AC}$$

$$\Rightarrow \frac{-1 - \sqrt{4B + 1 - 4AC}}{2A} + \sqrt{8B + 4 - 4AC}$$

$$\Rightarrow \frac{-1 + \sqrt{4B + 1 - 4AC}}{2A} + \sqrt{4B + 1 - 4AC}$$

$$\Rightarrow \frac{-1 + \sqrt{4B + 4 - 4AC}}{2A} - \sqrt{4B + 4 - 4AC}$$

$$\Rightarrow \frac{-1 + \sqrt{4B + 4 - 4AC}}{2A} - \sqrt{4B + 4 - 4AC}$$

$$\Rightarrow \frac{-1 + \sqrt{4B + 4 - 4AC}}{2A} - \sqrt{4B + 4 - 4AC}$$

$$\Rightarrow \frac{-1 + \sqrt{4B + 4 - 4AC}}{2A} + \sqrt{4B + 4 - 4AC}$$

$$\Rightarrow \frac{-1 + \sqrt{4B + 4 - 4AC}}{2A} + \sqrt{4B + 4 - 4AC}$$

$$\Rightarrow \frac{-1 + \sqrt{4B + 4 - 4AC}}{2A} + \sqrt{4B + 4 - 4AC}$$

$$\Rightarrow \frac{-1 + \sqrt{4B + 4 - 4AC}}{2A} + \sqrt{4B + 4 - 4AC}$$

$$\Rightarrow \frac{-1 + \sqrt{4B + 4 - 4AC}}{2A} + \sqrt{4B + 4 - 4AC}$$

$$\Rightarrow \frac{-1 + \sqrt{4B + 4 - 4AC}}{2A} + \sqrt{4B + 4 - 4AC}$$

$$\Rightarrow \frac{-1 + \sqrt{4B + 4 - 4AC}}{2A} + \sqrt{4B + 4 - 4AC}$$

$$\Rightarrow \frac{-1 + \sqrt{4B + 4 - 4AC}}{2A} + \sqrt{4B + 4 - 4AC}$$

$$\Rightarrow \frac{-1 + \sqrt{4B + 4 - 4AC}}{2A} + \sqrt{4B + 4 - 4AC}$$

$$\Rightarrow \frac{-1 + \sqrt{4B + 4 - 4AC}}{2A} + \sqrt{4B + 4 - 4AC}$$

$$\Rightarrow \frac{-1 + \sqrt{4B + 4 - 4AC}}{2A} + \sqrt{4B + 4 - 4AC}$$

$$\Rightarrow \frac{-1 + \sqrt{4B + 4 - 4AC}}{2A} + \sqrt{4B + 4 - 4AC}$$

$$\Rightarrow \frac{-1 + \sqrt{4B + 4 - 4AC}}{2A} + \sqrt{4B + 4 - 4AC}$$

$$\Rightarrow \frac{-1 + \sqrt{4B + 4 - 4AC}}{2A} + \sqrt{4B + 4 - 4AC}$$

$$\Rightarrow \frac{-1 + \sqrt{4B + 4 - 4AC}}{2A} + \sqrt{4B + 4 - 4AC}$$

$$\Rightarrow \frac{-1 + \sqrt{4B + 4 - 4AC}}{2A} + \sqrt{4B + 4 - 4AC}$$

$$\Rightarrow \frac{-1 + \sqrt{4B + 4 - 4AC}}{2A} + \sqrt{4B + 4 - 4AC}$$

$$\Rightarrow \frac{-1 + \sqrt{4B + 4 - 4AC}}{2A} + \sqrt{4B + 4 - 4AC}$$

$$\Rightarrow \frac{-1 + \sqrt{4B + 4 - 4AC}}{2A} + \sqrt{4B + 4 - 4AC}$$

$$\Rightarrow \frac{-1 + \sqrt{4B + 4 - 4AC}}{2A} + \sqrt{4B + 4 - 4AC}$$

$$\Rightarrow \frac{-1 + \sqrt{4B + 4 - 4AC}}{2A} + \sqrt{4B + 4 - 4AC}$$

$$\Rightarrow \frac{-1 + \sqrt{4B + 4 - 4AC}}{2A} + \sqrt{4B + 4 - 4AC}}$$

$$\Rightarrow \frac{-1 + \sqrt{4B + 4 - 4AC}}{2A} + \sqrt{4B + 4 - 4AC}$$

$$\Rightarrow \frac{-1 + \sqrt{4B + 4 - 4AC}}{2A} + \sqrt{4B + 4 - 4AC}$$

$$\Rightarrow \frac{-1 + \sqrt{4B + 4 - 4AC}}{2A} + \sqrt{4B + 4AC}$$

$$\Rightarrow \frac{-1 + \sqrt{4B + 4 - 4AC}}{2A} + \sqrt{4B + 4AC}$$

$$\Rightarrow \frac{-1 + \sqrt{4B + 4 - 4AC}}{2A} + \sqrt{4B + 4AC}$$

$$\Rightarrow \frac{-1 + \sqrt{4B + 4 - 4AC}}{2A} + \sqrt{4B + 4AC}$$

$$\Rightarrow \frac{-1 + \sqrt{4B + 4 - 4AC}}{2A}$$

Here, g(x) and h(x) were changed to see if this changed the conjecture. The situations tested appear algebraically below in Figure 3.1, and graphically in Figure 3.2

T-	•	4
Figure	- 4	
riguit	J	• 1

1184110011						
Situation #	f(x)	g(x)	h(x)	D		
11	$(x-3)^2+2$	x	3 <i>x</i>	2		
12	$-\frac{5}{3}(x-7)^2-7$	2x	4 <i>x</i>	1.2		
13	$-\frac{5}{3}(x-7)^2+17$	-2x	4 <i>x</i>	3.6		
14	$(x-3)^2+2$	x+1	2x	1		
15	$(x-3)^2+2$	x+1	2x+5	1		

Situation 11: Here, I changed my conjecture to tentatively be $D = \left| \frac{n-m}{A} \right|$, where m is from g(x) = mx and n is from h(x) = mx.

Situation 14: Here I attempted to determine whether the b value in g(x) = nx + b affected the D value. It did not, most likely because the part of the intersection point this problem is concerned with is the x value, and with parabolas, the x value increases proportionally on both sides of the axis of symmetry.

After trying all of these parabolas, I again proved my conjecture, the only difference being that now g(x) = mx and h(x) = nx.

$$a = A$$

$$b = (-2B - m)$$

$$c = (B^{2} + C)$$

$$\therefore \frac{2B + m \pm \sqrt{(-2B - m)^{2} - 4(A(B^{2} + C))}}{2A}$$

$$\therefore \frac{2B + m \pm \sqrt{4A^{2}B^{2} + 4Bm} + m^{2} - 4A^{2}B^{2} - 4A^{2})}{2A}$$

$$\therefore \frac{2B + m \pm \sqrt{4A^{2}B^{2} + 4Bm} + m^{2} - 4A^{2}B^{2} - 4A^{2})}{2A}$$

$$x_{1} = \frac{2B + m \pm \sqrt{4Am} - 4A^{2} + m^{2})}{2A}$$

$$x_{2} = \frac{2B + m - \sqrt{4Am} - 4A^{2} + m^{2})}{2A}$$

$$x_{3} = \frac{2B + m - \sqrt{4Am} - 4A^{2} + m^{2})}{2A}$$

$$x_{4} = \frac{2B + m + \sqrt{4Am} - 4A^{2} + m^{2})}{2A}$$

$$\therefore S_{L} = \frac{2B + m + \sqrt{4Am} - 4A^{2} + m^{2})}{2A}$$

$$\therefore S_{L} = \frac{2B + m - \sqrt{4Am} - 4A^{2} + m^{2})}{2A}$$

$$\Rightarrow \frac{Am - \sqrt{4Am} - 4A^{2} + m^{2}) - n + \sqrt{4Am} - 4A^{2} + m^{2})}{2A}$$

$$\Rightarrow \frac{Am - \sqrt{4Am} - 4A^{2} + m^{2}) - m - \sqrt{4Am} - 4A^{2} + m^{2}}{2A}$$

$$\Rightarrow \frac{Am - \sqrt{4Am} - 4A^{2} + m^{2}) - m - \sqrt{4Am} - 4A^{2} + m^{2}}{2A}$$

$$\Rightarrow \frac{Am - \sqrt{4Am} - 4A^{2} + m^{2}) - m - \sqrt{4Am} - 4A^{2} + m^{2}}{2A}$$

$$\Rightarrow \frac{Am - \sqrt{4Am} - 4A^{2} + m^{2}}{2A} - m - \sqrt{4Am} - 4A^{2} + m^{2}} - m - \sqrt{4Am} - 4A^{2} + m^{2}}{2A}$$

$$\Rightarrow \frac{Am - \sqrt{4Am} - 4A^{2} + m^{2}}{2A} - m - \sqrt{4Am} - 4A^{2} + m^{2}} - m - \sqrt{$$

After proving this conjecture, I investigated similar situations with cubic polynomials. Shown below is the graph of f(x) = 10(x-1)(x-2)(x-3), g(x) = x, and h(x) = 2x (Figure 4.1).

The intersections, similar to the quadratic examples, are labeled as x_1 , x_2 , x_3 , x_4 , x_5 , and x_6 from left to right as shown.

In this case, I again used my calculator to determine the values of these intersections. Once these were calculated, the values of $S_L = x_2 - x_1$, $S_M = x_4 - x_3$, and $S_R = x_6 - x_5$ were determined:

$$S_L = 1.144 - 1.058 = 0.086$$

 $S_M = 1.812 - 1.621 = 0.191$
 $S_R = 3.255 - 3.130 = 0.105$

After rearranging these values I found that $S_M - S_L - S_R = 0$, and then tested this conjecture on other cubic functions, shown below algebraically in Figure 5.1, and graphically in Figure 5.2

Figure 5.1

Example	f(x)	g(x)	h(x)	S_L	$S_{\scriptscriptstyle M}$	S_R
#						11
2	(x-1)(x-6)(x-8)	x	2x	0.033	0.376	0.344
3	(x+3)(x+7)(x+1)	x	2x	-0.24	-0.39	-0.149
4	2(x+3)(x+7)(x+1)	х	2 <i>x</i>	-0.131	-0.184	-0.03
5	4(x-1)(x-6)(x-8)	х	2 <i>x</i>	0.008	0.126	0.119
6	(x-1)(x-6)(x-8)	x	3 <i>x</i>	0.068	0.697	0.63

Example 3 = Cubics with negative roots work with the conjecture.

Example 3 = The S_M , S_L , and S_R values of this example were about half of those in example 1, leading me to change my conjecture to $\frac{1}{A}(S_M - S_L - S_R) = 0$

Example 5 = Here, as in the quadratic, I changed the h(x) equation to 3x to observe its affect on the S_M , S_L , and S_R values. When this change showed a change in the S values I formed the conjecture that $\frac{m-n}{A}(S_M - S_L - S_R) = 0$.