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Graph Transformations

Note: The arguments of frigonometric functions are done in radians.

A function, in mathematics, is an expression that, from an input number,
outputs another number that is nearly always influenced by the input one. An
intferesting aftribute to a function is that it can be graphed on a plane. A graph is
represented on a 2d plane or Cartesian plane when the function has 1 input
variable. Functions can also have more than 1 input variable, but are not graphed
on a 2d plane. For example a graph with two input variables is represented on a 3d
plane. Only functions with 1 input variable (therefore represented on a 2d plane) will
be examined.

To understand how a function is graphed, let’'s have a look at these common
functions and their corresponding graphs:
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Graph of f(x) = vx
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Graph of f{x) = x* Graph of fix) = J—t

SAY

3

Graph of flx) = |x| Graph of f(x) = e*

Here are some graphs of more complicated functions:
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Graph of f(x) = (x +5)? Graph of f(x) = \J(x +3) — 2

The last two graphs are similar in shape fo previous graphs . The first graph has
the same shape as the previously seen fix) = x2. The only noticeable difference is

that a franslation of (5, 0) has been applied to the first graph producing the graph
of f(x) = (x+5)2. We can see this by comparing the two graphs on the same plane:
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The blue graphis f(x) = x? and the red one is f(x) = {x+5)2
(-5;0) - (0; 0) = (-5; 0) and (-8; 9) = (-3; 9) = (-5; 0)

We can verify this at larger scales, to ensure that this is effectively a franslation and
not a franslation with a minute stretch, which only starts to have a visible impact at
larger scales.

(12; 289) - (17; 289) = (-5; 0)

5is significant because it is what was added to x before the result was squared up.
So we could conclude that for any function f(x) = (x + a)?its translation compared

to flx) = x%is (-0; 0).

To see if this is correct, we can guess the translation of F{x) = (x — 2)2.
a = —2therefore the translation is (—[-2]; 0} = (2; 0) .The graph below proves the
following:
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A noticeable fact about the func’rion(
flx) = (x +5)2

Is that it is the same as

g(x) = x?

flx) = glx +5)

That is the graph ends up being the same.

This raises the following question: What other kind of graph transformations
can be achieved through various manipulations of the input or output of a function?2

We can start by asking ourselves: w hat will happen to the graphs of functions
if  add or multiply their input or output?
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Graph of f(x) =+/x +3 — 2 and incidentally also the one of f{x) + 2 = yx+ 3 itis also
the graph of g(x) = f(x +3) — 2 when f(x) = Vx.

Previously we compared what happened when adding or subtracting fo the
input. We can also investigate what happens when the output is added or
subtracted to. Here are the graphs of f(x) = vx and f(x) + 2 =+x
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Each of these transformations is explainable. Assuming we added 2 to the
input of a function means that the value of the input will take the value of , say, 4
before the original function has, resulting in a horizontal shift. Adding to the output
can be explained by this equation for plotting the points of a function in a graph:

v is the output. Equation represents any mathematical equation.
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This explains the shift by c:/’plcces down vertically.

¢ So for the moment, adding or subfracting a number to a function ’s
output or input has translated it horizontally by adding or subfracting to
the input, and vertically by adding or subtracting to the output. The
franslation compared to the original function can be predicted by this
method:

g(x) = flx +a) (Where f(x) = any expression) Will be a horizontal
franslation, right, by —a.
flx) + b = Expression — will be a vertical franslation ,up, by -b.

Using the stated method above, we can calculate the franslation

of flx) =4/x+3-— 2.

First of all let's move all the inpu t and output altering numbers to the left side of the
equation:

g(x) = Vx
flx) = glx +3) - 2

3is added to the input and 2 to the output. This means that the graph of the function
is fransformed by a vector of (-3; -2). Or in human language, it is shifted by 3 points to
the left and 2 points down.

Another topic to explore is multiplying or dividing the output or input of a

function.
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f() =(x+2)?
flx) x3=(x+2)?

These graphs clearly show a stretch of some kind, but determining whether it is
vertical or horizontal is difficult to determine at a glance. An easy workaround for this
is to use a mathematical function that creates a graph that touches the x axis
multiple fimes. Fortunately, tfrigonometric functions do this for us.

SOOI N

f(x) = cos(x)
g(x) = f(3x)
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These two graphs not only confirm that multiplving the output or input
stretches the graph but it also helps us understand how to calculate the stretch and
also the direction.

The first graph (cosine graph) that multiplies the input shows us that a
horizontal stretch occurs. The stretch is seen as being ; because the input was

multiplied by 3. This observation is made by looking at the intervals difference (circled
in black) between the original graph and the fransformed one . The stretch happens
along the v axis.

The second graph represents a sine graph and its fransformation done by
multiplying the output. The stretchis a vertical one. The two circled points help us
notice that it is a stretch of 2, because the oufput was multiplied by 2. It is along the
x axis that the stretch occurs.

Why did this happen?2 For example, let’s say that the input of a function was
multiplied by 3. Arriving to an output of 5 will take %of the original distance, because

the input value was multiplied by 3. This creates a compression (or stretch)
horizontally, because that is where the input values are plotted. The explanation of
what happened to the graphs where the output was multiplied is simply that
whatever was outputted was multiplied by the inverse of the mulfiplication factor,
therefore stretching (or compressing) the graph vertically. Multiplying (or dividing) by
a negatfive number reflects the graph. (More about reversing the sign of a number [it
is equivalent to multiplying it by -1] is available Iater in the investig ation.)

Another way to explain this transformation is the following:

¥ ® a = Equation
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1
v = Equation x;

_ Equation

y=—

This shows how the output ends up being divided (or multiplied by the inverse).

¢ We now know that a graph is stretched when its output or input is
multiplied.
Multiplying the input ( g(x) = f(ax)) will stretch the graph by = (The

o

inverse of a) horizontally (It is stretched along the v axis.) .

f(x) x b = Equation — Multiplying the output will stretch the graph by%

vertically (stretched along the x axis) .

/SS¥E: When we say multiply, division is also implied because it just
comes back to multiplying by the inverse. The same is when we talk
about stretching a graph; compression of a graph is just the opposite.

Once again, we can move on to another tfransformation in function graphs.
This time, we will investigate reversing the sign of the input or output. To begin with
here is a series of graphs:
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fix) =(x1—-2)*+ 1
—f(x) =(x|-2)2+ 1

f(x)=e™™
: —f(_).’) = ™%

The transformation clearly appears on these graphs. We can directly
conclude that:

e Reversing the sign of the input reflects the graph’s image in the v axis.
e Reversing the sign of the oufput reflects the graph image in the x axis.

One interesting outcome was for the first graph
(Fflx) = (|x| = 2)* + 1; g(x) = F{—=x)), since the graph already reflected into the

v axis (because the function took into account the absolute value of x), no
change was noticed.

The reason this effect (reflection) is simple. All output values being
reversed, they end up showing to have beenreversed on the graph reversed.
The transformation is done horizontally because the v axis (the output) is
perpendicular to the x axis (input). Negating the input values creates a similar
transformation, but horizontally, because the input values are done along the
X QOXis.

Inversing the input or oufput of a function is also something to be
considered:

Graph of flx} = 2x*

And g = £
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The transformations that appears
on these functions are a bit more
complex, but easily understandable. First
we must remember what inversing means
A number and its inverse multiplied
together will always equal 1. This means
that the inverse of a number greater than
1 or litfler than -1 will have an inverse litfler
than 1 or bigger than -1(A positive number will have a positive inverse and a

negative number will have a negative inverse.). This is however not possible with 0,
because 0 multiplied by any number is 0. Also nothing is divisible by 0.

The second graph simply shows a sine graph and the inverse of its output.
Since we know an easy way fo find an inverse of a number is fo divide 1 by the
number, then the graph makes sense. Every time that it has a negative value, it has a
negative inverse, that tends fo —e2 as the graph moves back up to become positive.

And whenever a v value is equal to 1, sois its inverse. This fransformation ends up
having 2 lines that define where the transformation takes place. ¥ =1 for positive

values and v = -Wfor negative values. The best way to describe the fransformation is
that it applies a reflection, stretch and compression, on either side of the v = +Wlne
and it also smoothes out the output image, leaving it with a curved look (This cannot
be observed on this graph but can be on the following :

12
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flx) =x
1
glx) = o)

This shows how the graph is given a curved look. ).

The first graph (f{x) = 2x? and g(x) = f(i)) obeys to the same principles of

what was previously explained, but since it is the in put that was inversed, so a
fransformation will occur around the line of x = +¥7Instead of having a vertical
fransformation, it is a horizontal one.

An interesting graph found by inversing the input is the following:

flx) = sinx

0 = 7

13
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This interesting graph comes with an explanation. We know that a usual sine
graph is a series of waves. We also know that inversing the input means that any
value over than 1 will result in being smaller than 1(littler than -1 will result in being
bigger than -1.). Thisis because the sine function does not tend to ez, as x fends
fo +eo; allit does is fluctuate indefinitely. Therefore the inverse, where a value near 0
will tend to t2, will place all the infinite number of fluctuations between -1 and 1.

Instead of taking the inverse, we could consider taking the absolute value of
the input or output.

FxX) = 2x2+3x +4 Flx) = 1n(3x+§)+1

g(x) = |7 ()| g(x) = f(lx[)

‘Y

f(x) = tan(x) flx) = e*

14
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g(x) = |f(x)] g(x) = f(Ix0)

The results here show us that when the absolute value of the output is taken,
the parts of the graph in the lower negative quadrants are reflected back up info
the upper positive ones through a line of reflection along the x axis. This means that
nothing is left in the lower quadrants. When the absolute value of the input is faken,
all parts of the graph on the left side of the quadrant are omitted and are just a
reflection of the right side of the quadrant. The line of reflection is the v axis.

The graphs turned out this way because of the way the modulus function
works. If we think about it, the function makes sure anvy number that it processes turns
out to be positive. When taking the absolute value of the output this meant that
there was an impossibility of the graph being on the lower (and negative) quadrants,
thus resulting in the observed reflection. Taking the absolute value of the input means
that even on the left quadrants where the input(x) is negative, the graph ends up
being calculated with a positive input, meaning that the quadrants of the left are a
reflection of the ones on the right.

A derivation from these findings is applving —lx|l on the functions input and

output.
A 4|4 A7y
‘I | 3 - I
|I ‘! J"
|
\i 1 I .
Ill | 1 r'l
\ f i 2 N
h -4 -2 2 4 6
-1
-2
-3
-4
flx)=2x7+3x—1 flx) = e*
g(x) = —|f(x) glx) = f(=Ix)

The following graphs show us what happens when applying the opposite of
the modulus, which instead of ensuring that the sign of a number is +, ensures that
the sign is -. So both of these graphs are perfectly understandable and the same
reasoning has to be applied to understand and prove the behaviour of these
graphs. Applving the opposite of the modulo on the output just ensures that all the
values are in the two bottoms quadrants, creating a reflection in the x axis.  Applving
the opposite of the modulo to the input simply reflects whatever was in the left

15
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quadrants into the right quadrants, ignoring the graph supposed to be on the right
quadrants.

Grouping up the most reliable findings, we can calculate the translation and
stretch (including compression) to gener dlize the findings into functions:

glx) = af(b(x+ c)}+ d

gx) = af(bx+c)+ d

In these equations:

e The graph is stretched along v (vertically) by a factor of C4

e The graph is stretched along x (horizontally) by a factor of 572,

e The graph is shifted along v (vertically, up) by d poinfs.

o The graph is shifted along x(horizontally, left) by ¢ points in the first function,
and by % points in the second function.

The last statement is proven by factorising the second function:

glx) = af(bx+c) +d

glx) = af(b(x+§))+d

The only difference between the two is the order in which adding and
multiplying the input is made. This ends up creating a different centre of
Transformo’ri?which can easily be mistaken for a centre of rotation when working
with a y:ﬁw type of graph (linear function).

The first function has a centre of fransformation at (-c;&Pwhen values of a and
b are changed. The second function has ifs centre of fransformation at {— %; d).

The concept of this centre of fransformation is proven by taken both of the
values that shift the graph across the Cartesian plane.

16
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flx) = a(b(x - c:l} +d
glx)=albx+c)+ d

These two graphs have a parent function of the kind h{x) = x.
a
A1
’l\ 1PV
s rd
® AN

/{ \g\:\a\ \' 4 q

The two graphs overlapped for a clearer understanding.

For both of these graphs:

b=0.5
c=2
d=1

In the first graph, ais 1.5 and itis -1.4 in the second one.

17
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So the centre of fransformation for Fx) is (-2; 1) and g(x) has its centre at (-4; 1)
calculated with the following:

(—i- 1) = —41
[].5: - r

The term “centre of rotation” is ambiguous, as no real rotation occurs, but
rather a compression/stretch. The fact that the graph is a linear one can easily
confuse us, but as we have seen earlier, multiplying input or output just stretches or
compresses.

This time instead of using a parent function of ) = x we can use one of the
kind f{x) = x2.

So we have the following functions:
flx) = x°

h(x) = af(b(x+c)) +d

glx) = af(bx+c)+ d

Note: We will use the same values that we used for the previous functions with =fx) =x
as parent.

Sob=05c=2,d=1. Andawil be 1.5 and -1.4in each respective graph.

4 h 4 Ey

18
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The two graphs overlapped.

So the centre of transformation for Pgx) is (-2; 1) and g(x) has a centre of
transformation at

(-4;1).

This shows how the centres of transformation are still the same, irrelevant of the
parent function.

Another noteworthy fact, done by observation of all the previous graphs,
is that whenever modifving the outfput (adding to if, multiply ing if,
dividing it, inversing it, getting its absolute value etc) of a function, it
always has a vertical effect. Modifying the input produces a horizontal
effect; let it be a stretch, translation, reflection or any other
fransformation.

With all of this in written down, can we predict a graph transformation? If it is
so, let’s give it a try.

flx) = %3
g(x) = %f{4(x+ 3)+2

At first sight, this is a cubic equation that has in g(x) been shifted and
compressed (or scaled).

19
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A

Cubic function graphed.

Input Transformation: First, we know that it is shifted left by 3 points. After, we
know that it has been expanded by a factor of ;1 (or compressed by a factor of 4)

horizontally.

Output Transformation: The graph is then stretched by a factor of %ver’ricclly.

It has also been shifted upwards by 2 points.

To check our prediction, here are the graphs of the two functions (The red
one being the original and the blue one the fransformed one) :

To pursue the validity of the generalisations that have been made, we can try
vet another function.

fG) = x

20



‘ Marked by Teachers

Math: Graph Transformations
Sebastian

g(x) =3(f(6x +5) - 2)

First of all we identify the parent function of being of the form f(x) = +/x. Then,
to make it be in the form

glx) = af(bx+c)+ d

We expand it:
glx) =3(f(ex +5) —2)

glx) =3f(6x+5)— 6

Now all we have to dois apply the rules that we have discovered:

Input Transformation: First, we know that it is shifted left by E of a point. After,

we know that it has been expanded by a factor of é horizontally.

Output Transformation: The graph is then stretched by a factor of 3 vertically.
It has also been shifted upwards by -6 points.

Sure enough, the results are as expected:

f(x)= Vx
g(x)=3(f(6x+5)-2)

4 2

Another fransformation that did not make a function because it resulted as a
one-to-many equation was still noteworthy of exploration. What was changed to the
input or output was adding a + sign before them.

21
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y = sinx +y=sinx
A
2
- /es : -
-5 5 -5 5
=2 4
¥y = gx y o eix

These graphs just create a mutual reflection in x and v depending whether the
input or the output was changed.

Changes such as these are easily explainable; in the cases of y = ¥, positive

and negative values of x (input) are considered, just on the right side of the quadrant
(where x is positive). The same is true for the left side (where x is negative), therefore
creating this mutual reflection in the v axis. Putting + as a multiplier of the output plots
the graph in its positive and negative values, creating this mutual reflection along
the x axis. As a quick note, we can also notice that the rule of the output
modification creating a vertical fransformation and the input modification creating a
horizontal fransformation also applies in these graphs.

22
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Up fill now, only graphs of function have been explore/d. Equations also can
de graphed and modified. For example, we can graph (x—c,'}"z+(y—7}2=,4.

In the following graph, a=0; b=0; r=1

4
3
2
G
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.

a=2; b=1;r=1

- N W s

a=2; b=1;r=3

From these observations, a and b change the x and v coo rdinate of the circle
and r changes ifs radius.

23
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If we think about it, it is actually logical.

-2+ (y—b)?= 12

Since each variable is squared, this means that it is a one -to-many equation.
Therefore multiple points will be plotted because there are two solutions for each
values. This is what forms the circle. a and b are what creates the circle shift; which is
somewhat similar to earlier observations. Finally r changes the diameter, because
when changed, it forces x and v to adapt to the change, creating a bigger or little
circle, depending on the range of the solutions.
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