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Derivatives of Sine Functions

1. The following information was my investigation to find the derivative of the
function f(x) =sinx.

a) The following is a graph for the function f(x)=sinx for -2z <x<2x.
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b) The table below describes the behavior of the gradient of

f(x)=sinxfor27 <x<2r.

Gradient behavior in given points of f(x)=sinx

X Y Gradient (+, —, or 0)
-2r 0 +
S I 0

2
-z -1 0
2

0 0 T

z 1 0

2

T 0 —

il o 0

2

2 0 +

¢) Because the derivative of a function is the gradient at a given point, my
conjecture for y = f'(x) is as follows:

f(x)=sinx
2 f'(x)=cosx
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nDeriv(sin(x)) at a given X-value
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nDeriv of sinx on a TI-83 Calculator

2" 0 (CATALOG)

LOG (Alpha N), nDeriv
For example, to get the
derivative of sinx at x = 0,
enter:

nDeriv(sin(X),X,0)
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Relationship of dy/dx of f(x)=sinx versus Y-value of f(x)=cosx at a given X-value

X-Value dy/dx f(x)=sinx f(x)=cosx
-2 1 1
_3 0 0
2
- -1 -1
_r 0 0
2
0 1 1
z 0 0
2
T -1 -1
3 0 0
2
2r 1 1
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The tables on the preceding page show that the derivative of f(x) = sinx at the following

plotted points —27 < x < 27 in increments of B starting left to right x =-27 .
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In the following graph, the points are connected to form y = f'(x), , .
o f'(x)=cosx
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2. The following is my investigation of the derivatives of functions in the
form g(x) = asin x. The red dots in the following graphs below represent the

derivative of the function at a particular X-value.
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Concluded from the graphs above, my conjecture for the derivative of the
function g(x) =asinx, —27 < x <27 is that when1< a <5, a determines the function

amplitude or vertical stretch. Consider also the following graphs:
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3. The following is my investigation of the derivatives of functions in the
form i(x) =sinbx . The red dots in the following graphs below represent the

derivative of the function at a particular X-value.
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Concluded from the graphs above, my conjecture for the derivative of the
function 4(x) =sinbx , -2z < x < 2x is that when1< b <5, b determines the function

frequency or horizontal stretch. Consider also the following graphs:
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4. The following is my investigation of the derivatives of functions in the
form j(x) =sin(x+c). The red dots in the following graphs below represent the

derivative of the function at a particular X-value. (The gray line is f(x) =sinx.)
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Concluded from the graphs above, my conjecture for the derivative of the

function 4(x) =sinbx , -2z < x < 2x is that when1 < ¢ <5, ¢ determines the function
Phase shift or horizontal translation. Consider also the following graphs:
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5. Therefore, based on previous conjectures, the derivative of k(x)=asinb(x+c),

where a (amplitude) is 2, b (frequency) is 3, and ¢ (phase shift) is 4, is represented as
red dots in the following graph:
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6. Also, based on previous conjectures and the chain rule, the derivative of
m(x) = sin” x can be written as m'(x) = 2sin x cos x. Consider the following graphs

where the red line represents m(x) = sin® x, -2z < x < 27 , the gray line represents
p gray p

m'(x) = 2sin x cos x, and the red points represent the derivative of m(x)=sin” xat an
X-value.
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f(x)=sinx

Because of the chain rule: y = (f(x))" .. y' =n(f(x))"" f'(x) and” "~ ,
o f'(x)=cosx

Thus:

m(x) =sin® x or m(x) = (sin x)>
=2(sin x)'(cos x)

m'(x)=2sinxcosx

In conclusion, from my investigation of the Derivative of sine functions, I have
discovered the following:

f(x)=sinx

o f(x)=cosx

e k(x)=asinb(x+c), where the derivative is affected by
a. athe amplitude
b. b the frequency
c. c the phase shift

e The derivative of m(x) =sin’ x can be written asm'(x) = 2sin xcos x.

*In this investigation, there are limitations to graphs given as examples. The values
substituted only occurred 1< <5 and, therefore, no negative values can be accounted for
in the conjectures. Also, the graphs used only fall under —27 < x <27 and , and, thus,
cannot confirm the conjecture outside of these limits.



