Mark Andrew Garner Judy Land Math Standard Level April 30, 2008 ## **Derivatives of Sine Functions** ## Method - 1. The following information was my investigation to find the derivative of the function $f(x) = \sin x$. - a) The following is a graph for the function $f(x) = \sin x$ for $-2\pi \le x \le 2\pi$. | TI – 83 Graph Window | | |----------------------|-----------------| | Xmin = | -2π | | Xmax = | 2π | | Xscl = | $\frac{\pi}{2}$ | | Ymin = | -5 | | Ymax = | 5 | | Yscl = | 1 | b) The table below describes the behavior of the gradient of $f(x) = \sin x$ for $-2\pi \le x \le 2\pi$. | Gradient behavior in given points of $f(x) = \sin x$ | | | |--|----|-----------------------| | х | Y | Gradient (+, -, or 0) | | -2π | 0 | + | | $-\frac{3\pi}{2}$ | 1 | 0 | | $-\pi$ | 0 | _ | | $-\frac{\pi}{2}$ | -1 | 0 | | 0 | 0 | + | | $\frac{\pi}{2}$ | 1 | 0 | | π | 0 | _ | | $\frac{3\pi}{2}$ | -1 | 0 | | 2π | 0 | + | c) Because the derivative of a function is the gradient at a given point, my conjecture for y = f'(x) is as follows: $$f(x) = \sin x$$ $$\therefore f'(x) = \cos x$$ | TI – 83 Graph Window | | |----------------------|--| | -2π | | | 2π | | | $\frac{\pi}{2}$ | | | -5 | | | 5 | | | 1 | | | | | | nDeriv(sin(x)) at a given X-value | | |-----------------------------------|----| | -2π | 1 | | $-\frac{3\pi}{2}$ | 0 | | $-\pi$ | -1 | | $-\frac{\pi}{2}$ | 0 | | 0 | 1 | | $\frac{\pi}{2}$ | 0 | | π | -1 | | $\frac{3\pi}{2}$ | 0 | | 2π | 1 | ## nDeriv of sinx on a TI-83 Calculator • 2nd, 0 (CATALOG) - LOG (Alpha N), nDeriv - For example, to get the derivative of sinx at x = 0, enter: nDeriv(sin(X),X,0) | Relationship of dy/dx of $f(x)=\sin x$ versus Y-value of $f(x)=\cos x$ at a given X-value | | | |---|-----------------------|-----------------| | X-Value | $dy/dx f(x) = \sin x$ | $f(x) = \cos x$ | | -2π | 1 | 1 | | $-\frac{3\pi}{2}$ | 0 | 0 | | $-\pi$ | -1 | -1 | | $-\frac{\pi}{2}$ | 0 | 0 | | 0 | 1 | 1 | | $\frac{\pi}{2}$ | 0 | 0 | | π | -1 | -1 | | $\frac{3\pi}{2}$ | 0 | 0 | | 2π | 1 | 1 | The tables on the preceding page show that the derivative of $f(x) = \sin x$ at the following plotted points $-2\pi \le x \le 2\pi$ in increments of $\frac{\pi}{2}$ starting left to right $x = -2\pi$. | 1 3370 1 | | |----------------------|--| | TI – 83 Graph Window | | | -2π | | | 2π | | | $\frac{\pi}{2}$ | | | -5 | | | 5 | | | 1 | | | | | In the following graph, the points are connected to form y = f'(x), $f(x) = \sin x$. $f'(x) = \cos x$. | TI – 83 Graph Window | | |----------------------|-----------------| | Xmin = | -2π | | Xmax = | 2π | | Xscl = | $\frac{\pi}{2}$ | | Ymin = | -5 | | Ymax = | 5 | | Yscl = | 1 | 2. The following is my investigation of the derivatives of functions in the form $g(x) = a \sin x$. The red dots in the following graphs below represent the derivative of the function at a particular X-value. Concluded from the graphs above, my conjecture for the derivative of the function $g(x) = a \sin x$, $-2\pi \le x \le 2\pi$ is that when $1 \le a \le 5$, a determines the function *amplitude* or vertical stretch. Consider also the following graphs: 3. The following is my investigation of the derivatives of functions in the form $h(x) = \sin bx$. The red dots in the following graphs below represent the derivative of the function at a particular X-value. Concluded from the graphs above, my conjecture for the derivative of the function $h(x) = \sin bx$, $-2\pi \le x \le 2\pi$ is that when $1 \le b \le 5$, b determines the function *frequency* or horizontal stretch. Consider also the following graphs: 4. The following is my investigation of the derivatives of functions in the form $j(x) = \sin(x+c)$. The red dots in the following graphs below represent the derivative of the function at a particular X-value. (The gray line is $f(x) = \sin x$.) Concluded from the graphs above, my conjecture for the derivative of the function $h(x) = \sin bx$, $-2\pi \le x \le 2\pi$ is that when $1 \le c \le 5$, c determines the function *phase shift* or horizontal translation. Consider also the following graphs: 5. Therefore, based on previous conjectures, the derivative of $k(x) = a \sin b(x+c)$, where a (amplitude) is 2, b (frequency) is 3, and c (phase shift) is 4, is represented as red dots in the following graph: | Г | | |----------------------|-----------------| | TI – 83 Graph Window | | | Xmin = | -2π | | Xmax = | 2π | | Xscl = | $\frac{\pi}{2}$ | | Ymin = | -5 | | Ymax = | 5 | | Yscl = | 1 | 6. Also, based on previous conjectures and the chain rule, the derivative of $m(x) = \sin^2 x$ can be written as $m'(x) = 2\sin x \cos x$. Consider the following graphs where the red line represents $m(x) = \sin^2 x$, $-2\pi \le x \le 2\pi$, the gray line represents $m'(x) = 2\sin x \cos x$, and the red points represent the derivative of $m(x) = \sin^2 x$ at an X-value. | TI – 83 Graph Window | | |----------------------|-----------------| | Xmin = | -2π | | Xmax = | 2π | | Xscl = | $\frac{\pi}{2}$ | | Ymin = | -5 | | $Y_{\text{max}} =$ | 5 | | Yscl = | 1 | Because of the chain rule: $$y = (f(x))^n$$ \therefore $y' = n(f(x))^{n-1} f'(x)$ and $f(x) = \sin x$. Thus: $$m(x) = \sin^2 x \text{ or } m(x) = (\sin x)^2$$ $$= 2(\sin x)^1(\cos x)$$ $$m'(x) = 2\sin x \cos x$$ In conclusion, from my investigation of the Derivative of sine functions, I have discovered the following: $$f(x) = \sin x$$ $$f'(x) = \cos x$$ - $k(x) = a \sin b(x+c)$, where the derivative is affected by - a. *a* the amplitude - b. b the frequency - c. c the phase shift - The derivative of $m(x) = \sin^2 x$ can be written as $m'(x) = 2\sin x \cos x$. ^{*}In this investigation, there are limitations to graphs given as examples. The values substituted only occurred $1 \le n \le 5$ and, therefore, no negative values can be accounted for in the conjectures. Also, the graphs used only fall under $-2\pi \le x \le 2\pi$ and , and, thus, cannot confirm the conjecture outside of these limits.