Mark Andrew Garner

Judy Land

Math Standard Level

April 30, 2008

Derivatives of Sine Functions

Method

- 1. The following information was my investigation to find the derivative of the function $f(x) = \sin x$.
 - a) The following is a graph for the function $f(x) = \sin x$ for $-2\pi \le x \le 2\pi$.

TI – 83 Graph Window	
Xmin =	-2π
Xmax =	2π
Xscl =	$\frac{\pi}{2}$
Ymin =	-5
Ymax =	5
Yscl =	1

b) The table below describes the behavior of the gradient of $f(x) = \sin x$ for $-2\pi \le x \le 2\pi$.

Gradient behavior in given points of $f(x) = \sin x$		
х	Y	Gradient (+, -, or 0)
-2π	0	+
$-\frac{3\pi}{2}$	1	0
$-\pi$	0	_
$-\frac{\pi}{2}$	-1	0
0	0	+
$\frac{\pi}{2}$	1	0
π	0	_
$\frac{3\pi}{2}$	-1	0
2π	0	+

c) Because the derivative of a function is the gradient at a given point, my conjecture for y = f'(x) is as follows:

$$f(x) = \sin x$$
$$\therefore f'(x) = \cos x$$

TI – 83 Graph Window	
-2π	
2π	
$\frac{\pi}{2}$	
-5	
5	
1	

nDeriv(sin(x)) at a given X-value	
-2π	1
$-\frac{3\pi}{2}$	0
$-\pi$	-1
$-\frac{\pi}{2}$	0
0	1
$\frac{\pi}{2}$	0
π	-1
$\frac{3\pi}{2}$	0
2π	1

nDeriv of sinx on a TI-83 Calculator • 2nd, 0 (CATALOG)

- LOG (Alpha N), nDeriv
- For example, to get the derivative of sinx at x = 0, enter:

nDeriv(sin(X),X,0)

Relationship of dy/dx of $f(x)=\sin x$ versus Y-value of $f(x)=\cos x$ at a given X-value		
X-Value	$dy/dx f(x) = \sin x$	$f(x) = \cos x$
-2π	1	1
$-\frac{3\pi}{2}$	0	0
$-\pi$	-1	-1
$-\frac{\pi}{2}$	0	0
0	1	1
$\frac{\pi}{2}$	0	0
π	-1	-1
$\frac{3\pi}{2}$	0	0
2π	1	1

The tables on the preceding page show that the derivative of $f(x) = \sin x$ at the following plotted points $-2\pi \le x \le 2\pi$ in increments of $\frac{\pi}{2}$ starting left to right $x = -2\pi$.

1 3370 1	
TI – 83 Graph Window	
-2π	
2π	
$\frac{\pi}{2}$	
-5	
5	
1	

In the following graph, the points are connected to form y = f'(x), $f(x) = \sin x$. $f'(x) = \cos x$.

TI – 83 Graph Window	
Xmin =	-2π
Xmax =	2π
Xscl =	$\frac{\pi}{2}$
Ymin =	-5
Ymax =	5
Yscl =	1

2. The following is my investigation of the derivatives of functions in the form $g(x) = a \sin x$. The red dots in the following graphs below represent the derivative of the function at a particular X-value.

Concluded from the graphs above, my conjecture for the derivative of the function $g(x) = a \sin x$, $-2\pi \le x \le 2\pi$ is that when $1 \le a \le 5$, a determines the function *amplitude* or vertical stretch. Consider also the following graphs:

3. The following is my investigation of the derivatives of functions in the form $h(x) = \sin bx$. The red dots in the following graphs below represent the derivative of the function at a particular X-value.

Concluded from the graphs above, my conjecture for the derivative of the function $h(x) = \sin bx$, $-2\pi \le x \le 2\pi$ is that when $1 \le b \le 5$, b determines the function *frequency* or horizontal stretch. Consider also the following graphs:

4. The following is my investigation of the derivatives of functions in the form $j(x) = \sin(x+c)$. The red dots in the following graphs below represent the derivative of the function at a particular X-value. (The gray line is $f(x) = \sin x$.)

Concluded from the graphs above, my conjecture for the derivative of the function $h(x) = \sin bx$, $-2\pi \le x \le 2\pi$ is that when $1 \le c \le 5$, c determines the function *phase shift* or horizontal translation. Consider also the following graphs:

5. Therefore, based on previous conjectures, the derivative of $k(x) = a \sin b(x+c)$, where a (amplitude) is 2, b (frequency) is 3, and c (phase shift) is 4, is represented as red dots in the following graph:

Г	
TI – 83 Graph Window	
Xmin =	-2π
Xmax =	2π
Xscl =	$\frac{\pi}{2}$
Ymin =	-5
Ymax =	5
Yscl =	1

6. Also, based on previous conjectures and the chain rule, the derivative of $m(x) = \sin^2 x$ can be written as $m'(x) = 2\sin x \cos x$. Consider the following graphs where the red line represents $m(x) = \sin^2 x$, $-2\pi \le x \le 2\pi$, the gray line represents $m'(x) = 2\sin x \cos x$, and the red points represent the derivative of $m(x) = \sin^2 x$ at an X-value.

TI – 83 Graph Window	
Xmin =	-2π
Xmax =	2π
Xscl =	$\frac{\pi}{2}$
Ymin =	-5
$Y_{\text{max}} =$	5
Yscl =	1

Because of the chain rule:
$$y = (f(x))^n$$
 \therefore $y' = n(f(x))^{n-1} f'(x)$ and $f(x) = \sin x$. Thus:
$$m(x) = \sin^2 x \text{ or } m(x) = (\sin x)^2$$

$$= 2(\sin x)^1(\cos x)$$

$$m'(x) = 2\sin x \cos x$$

In conclusion, from my investigation of the Derivative of sine functions, I have discovered the following:

$$f(x) = \sin x$$

$$f'(x) = \cos x$$

- $k(x) = a \sin b(x+c)$, where the derivative is affected by
 - a. *a* the amplitude
 - b. b the frequency
 - c. c the phase shift
- The derivative of $m(x) = \sin^2 x$ can be written as $m'(x) = 2\sin x \cos x$.

^{*}In this investigation, there are limitations to graphs given as examples. The values substituted only occurred $1 \le n \le 5$ and, therefore, no negative values can be accounted for in the conjectures. Also, the graphs used only fall under $-2\pi \le x \le 2\pi$ and , and, thus, cannot confirm the conjecture outside of these limits.