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Introduction

If a hydroelectric project is expected to cerate a large lake into which some fish are to be
placed, a biologist estimates that if 10,000 fish were introduced into the lake, the
population of fish would increase by 50% in the first year, but the long-term sustainable
limit would be about 60,000.

In order to estimate the growth rate of the population of fish, it is best to find a linear
growth factor for. We do this by finding two ordered pairs in the form (uy, r¢), (Un, In).

1 is the growth rate when the population is n.

since we know from the information given that when there are 60000 fish in the lake, the
growth rate is stable i.e. 1, this can be represented as one of our ordered pairs: (60000, 1).
We also know that when 10000 fish are in the lake, the growth rate is 50% i.e. population
is multiplied by 1.5, so the second ordered pair is (10000, 1.5).

from these pairs we have:

Tioo00 = 1.5
T'60000 = 1

and since we are trying to search for a linear function of the growth rate, we can also
denote 1, as:

rm=mn+b where n= population of fish. Substituting the two ordered pairs, we have:

1.5 = m(10000) + b
1 = m(60000) + b

Putting this into the GDC, we find that the solutions to the two unknowns are:
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m = -0.00001
b=1.6

from this, we can make the conjecture for the linear growth factor of fish in terms of Uy,:
1, =-0.00001 x u, + 1.6
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Since geometric population growth models take the form: uy =1 X Uy

and we also have that r, = -0.00001 x u, + 1.6, we find that the function for u,; is:

Ut =(-0.00001 % u, + 1.6) x u,

This is rather obvious because population size of the next year is equal to population size
this year multiplied by the growth rate.

Now, let us explore what would happen if we left this population of fish to grow for 20
years, assuming that our models for total population and growth rate are correct. It is best
to use Microsoft Excel 2007 to calculate this. Initially there is a population of 10000:

Year Population of Fish Rate of Growth
t U, =(-0.00001 xu,+ 1.6) xu, r, =-0.00001 x u, + 1.6
0 10000 1.5
1 15000 1.45
2 21750 1.3825
3 30069.375 1.29930625
4 39069.32687 1.209306731
5 47246.79997 1.127532
6 53272.27888 1.067277211
7 56856.28924 1.031437108
8 58643.68652 1.013563135
9 59439.07875 1.005609213
10 59772.48517 1.002275148
11 59908.47644 1.000915236
12 59963.30681 1.000366932
13 59985.30926 1.000146907
14 59994.12155 1.000058785
15 59997.64827 1.000023517
16 59999.05925 1.000009407
17 59999.62369 1.000003763
18 59999.84948 1.000001505
19 59999.93979 1.000000602
20 59999.97592 1.000000241

(This data was achieved by using formulas in Microsoft Excel)




With these data values, it is possible to find a logistic function for the population size of
fish by using the GDC. Based on the values given in the table above, the calculator is
able to estimate the logistic function of u,+;. The function given by the calculator is:

Loai EL%E§E$EEE?5 However, the function that the calculator gives

a =Ja is just an estimate, so it is safe for us to round
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Putting the data obtained from the excel table into a line graph, we have:
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This graph shows that starting from a population of 10000 fish, the rate of growth will
increase initially, and then decrease so that at approximately year 10, there is a stable
growth rate. This is an S-shaped curve.

Next we should consider how a different initial growth rate will affect the graph. For
example, it may be the case that biologists speculate that the initial growth rate of fish

may vary considerably. I will now investigate functions models for u,;; with growth rates
r=2,2.3,2.5.



Model for Growth Rate =2

When we have a new initial growth rate, the ordered pairs i.e. (uy,, 1,) have now changed
to:

(60000, 1)

(10000, 2)

To find the linear growth factor, we must form the two equations:

2 =m(10000) + b
1 = m(60000) + b
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Solving this on the GDC, we have m =-0.00002 and b = 2.2 so the linear growth factor is:
r, =-0.00002 x u, + 2.2

and therefore the function for u,+; for is:
Unt1 = (-0.00002 X u, +2.2) uy

If we let 10000 fish with an initial growth rate of 2 cultivate for 20 years, the population
of growth would be:

Year Population of Fish Rate of Growth
t U+ = (-0.00002 X u, + 2.2) u, r, =-0.00002 x uy, + 2.2
0 10000 2
1 20000 1.8
2 36000 1.48
3 53280 1.1344
4 60440.832 0.99118336
5 59907.94694 1.001841061
6 60018.24114 0.999635177
7 59996.34512 1.000073098
8 60000.73071 0.999985386
9 59999.85385 1.000002923




10 60000.02923 0.999999415

11 59999.99415 1.000000117

12 60000.00117 0.999999977

13 59999.99977 1.000000005

14 60000.00005 0.999999999

15 59999.99999 1

16 60000 1

17 60000 1

18 60000 1

19 60000 1

20 60000 1
As we have done before, we should also use the GDC to find an estimate for the logistic
function:
LogisticRea However, the function that the calculator gives
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Putting this in a graph, we have:
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Model for Growth Rate = 2.3

When we have a new initial growth rate, the ordered pairs i.e. (uy, 1,) have now changed
to:

(60000, 1)

(10000, 2.3)

To find the linear growth factor, we form the two equations:
2.3 =m(10000) +b
1 =m(60000) +b
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Solving this on the GDC, we have m = -0.000026 and » = 2.56 so the linear growth factor
is:

I, = -0.000026 x u, +2.56
and therefore the function for u,+; for is:
Up+1 = (-0.000026 X u, +2.56) u,

If we let 10000 fish with an initial growth rate of 2.3 cultivate for 20 years, the
population of growth would be:

Year Population of Fish Growth Rate
t Uy = (-0.000026 x u, + 2.56) u, r, =-0.000026 % u, + 2.56
0 10000 2.3
1 23000 1.962
2 45126 1.386724
3 62577.30722 0.932990012
4 58384.00263 1.042015932
5 60837.06089 0.978236417
6 59513.02846 1.01266126
7 60266.53839 0.993070002




8 59848.89139 1.003928824
9 60084.02714 0.997815294
10 59952.76123 1.001228208
11 60026.39569 0.999313712
12 59985.2003 1.000384792
13 60008.28214 0.999784664
14 59995.36022 1.000120634
15 60002.59772 0.999932459
16 59998.5451 1.000037827
17 60000.81469 0.999978818
18 59999.54376 1.000011862
19 60000.25549 0.999993357
20 59999.85692 1.00000372

As we have done before, we should also use the GDC to find an estimate for the logistic

function:

However, the function that the calculator gives
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Putting this data into a graph, we have:
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Model for Growth Rate = 2.5

When we have a new initial growth rate, the ordered pairs i.e. (uy,, 1,) have now changed
to:

(60000, 1)

(10000, 2.5)

To find the linear growth factor, we form the two equations:
2.5=m(10000) + b
1 =m(60000) +b
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Solving this on the GDC, we have m = -0.00003 and b = 2.8 so the linear growth factor is:
1 =-0.00003 x u, +2.8

and therefore the function for u,+ for is:

Up+1 = (-0.00003 x u, + 2.8) u,

If we let 10000 fish with an initial growth rate of 2.5 cultivate for 20 years, the
population of growth would be:

Year Population of Fish Growth Rate
t U7 = (-0.00003 x u, +2.8) u, r, =-0.00003 xu, + 2.8
0 10000 2.5
1 25000 2.05
2 51250 1.2625
3 64703.125 0.85890625
4 55573.91846 1.132782446
5 62953.1593 0.911405221
6 57375.83806 1.078724858
7 61892.74277 0.943217717
8 58378.33153 1.048650054
9 61218.44052 0.963446784
10 58980.70967 1.03057871




11

60784.26368

0.976472089

12 59354.13697 1.019375891
13 60504.17625 0.984874712
14 59589.03319 1.012329004
15 60323.70664 0.990288801
16 59737.89111 1.007863267
17 60207.62608 0.993771218
18 59832.60588 1.005021824
19 60133.07467 0.99600776
20 59893.00899 1.00320973
As we have done before, we should also use the GDC to find an estimate for the logistic
function:
LogistickEea
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Putting these data values into a graph, we have:
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For now, let us compare these graphs to make generalizations about how the initial
growth rate can effect the population of fish over time.

The next page shows graphs the population of fish starting from initial growth rates r =

1.5,2,2.3 and 2.5.
Growth Rate = 1.5

Growth Rate =2
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From these graphs, we can make a few generalizations:

Generalization 1: As initial growth rate increases, the initial slope of the curve becomes

steeper.

Generalization 2: As initial growth rate increases, the fluctuations around the sustainable
limits are larger, causing the population to settle slower.

Generalization 3: No matter the initial rate, the sustainable limit always remains at

60000.

We should also compare the logistic function of each of these initial growth rates.
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Forr=1.5, we have

Forr=2, we have

For r=2.3, we have

Forr=2.5, we have
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First, sorting out these logistic formulas into tabular form, we can represent this as:

Initial Growth Rate (r) Qjogistic Diogistic Clogistic
1.5 6 0.6 60000

2 7 1.2 60000

2.3 7.4 1.56 60000

2.5 8 1.8 60000

From this table, we can also make a few generalisations:

Generalistaion 1:

Generalisation 2:

Generalisation 3:

As r increases by 0.5, a increases by 1.

c is always constant, and it is possible that this number represents
the sustainable limit of the fish population.

When I found the formula for the linear growth factor, I saw that it
took the form mx+b where b is a constant. We can see from this
data that byogisic = b-1.

(ie. for r = 1.5, linear growth factor = -0.00001u, + 1.6, and bjegisiic = 0.6)

It must be noted however, that these generalizations are made from only 4 examples

chosen, and though they may seem to fit in to the trend, more evidence is needed to prove

these generalizations.
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Looking at the logistic model, we can show that in theory, ajogisic = 5, given that we know
Clogistic = 60000 = sustainable limit.

Since we know that in every case, when time = 0, that is, initially our population is 10000,
substituting x = 0 in the logistic function, it must be the case that y = 10000. In other

words:
d11)
W =
1+ @
o = (1l
l+a
a=1>5

Although the initial growth rate should not affect the value of a, and a should always
have a value of 5, the calculations by the calculator are not the same. So why is this not
the case for the logistic functions calculated by the GDC?

The model that we used to insert data values for the population of fish is only an estimate.
For example uys; = (-0.00003 x u, + 2.8) u, was the function that we used to estimate the
values for population size. Remember that I based this function on a linear growth factor,
and in reality, this is not the case. The raw data that I calculated on excel do not
necessarily follow the same form as the geometric population growth function.

Another reason is that the calculator itself is not perfect. The logistic function calculated
by the GDC is simply an estimate of the line of best fit, according to the data values we
give. Since I was only able to insert approximately 20 data values, the calculator would
not have had enough information to produce a reliable and accurate logistic equation.

A peculiar outcome can be observed for situations where initial growth rate is
exceptionally high. To investigate this further, I will now choose to explore the fish
population with initial growth rates of 2.9, 3.2 and 3.5.



Model for Growth Rate = 2.9

When we have a new initial growth rate, the ordered pairs i.e. (uy,, 1,) have now changed
to:

(60000, 1)
(10000, 2.9)

To find the linear growth factor, we form the two equations:

2.9 = m(10000) + b
1 = m(60000) + b

-Elr'uH+|'_"lar'|"r'=|:r; . anst+brY=Ch
I[ loooo I 2.9 "
E[ I |] '.'[ a.ea]
GEREE - 3. 2E-B5
[zor (AW [CLR [E0IT REFT

Solving this on the GDC, we have m = -0.000038 and » = 2.8 so the linear growth factor
is:

rn =-0.000038 x u, + 3.28
and therefore the function for u,+; for is:
Up+1 = (-0.000038 X u, + 3.28) u,

If we let 10000 fish with an initial growth rate of 2.9 cultivate for 20 years, the
population of growth would be:

Year Population of Fish Growth Rate

t Uy+ = (-0.000038 < u, + 3.28) < u, 7, =-0.000038 < u, + 3.28
10000 2.9
29000 2.178
63162 0.879844

55572.70673

1.168237144

64922.10021

0.812960192

52779.08305

1.274394844

67261.39131

0.72406713

48701.76257

1.429333022
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69611.03749

0.634780576




9 44187.73444 1.600866091
10 70738.64572 0.591931463
11 41872.43004 1.688847659
12 70716.15543 0.592786094
13 41919.55354 1.687056965
14 70720.67479 0.592614358
15 41910.08729 1.687416683
16 70719.78048 0.592648342
17 41911.96064 1.687345496
18 70719.958 0.592641596
19 41911.58878 1.687359626
20 70719.92278 0.592642934
An estimate for the logistic function would be :
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Although the rounding off errors were relatively large this time, (i.e. from 57984.6612 to
become 60000, or from 2.67618108 to become 2.28), this does not mean that I am
incorrect. First let us take a look at the graph of the data shown in the table above.

Putting this data into a graph, we have:

Population of Fish vs. Time
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The first thing that we can see from this graph is that it never reaches a stable limit. The
population of fish simply oscillates and fluctuates around the sustainable limit (60000).
Unlike in a lake where initial growth rate is relatively small (i.e. r = 1.5, 2, 2.3, 2.5)
which slowly converges to a sustainable limit at 60000, with a high 7, this does not
happen. This will greatly affect the estimate of the logistic function by the GDC.

This is because the GDC estimates the logistic function by finding a line of best fit
through the data we insert, and finds an equation for the line of best fit. When such large
fluctuations exist in a graph (which I have only provided 20 values for), the error in the
estimate will also be much greater. Though my rounding off of the formula may have
been great, and have done so in order to support my previous generalizations on logistic
formulas, I am in a way, justified to do so.

Having said, this, this logistic function model has sufficiently proven my generalization 1
for logistic models wrong. I had stated that “As 7 increases by 0.5, a increases by 1.” This

is clearly not the case, and so cannot be true.

Model for Growth Rate = 3.2

When we have a new initial growth rate, the ordered pairs i.e. (up, ry) have now changed
to:

(60000, 1)
(10000, 3.2)

To find the linear growth factor, we form the two equations:

3.2 = m(10000) + b
1 = m(60000) + b
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Solving this on the GDC, we have m = -0.000044 and b = 3.64 so the linear growth factor
is:

r, =-0.000044 x u, + 3.64
and therefore the function for u,; for is:

Upe1 = (-0.000044 % uy, + 3.64) u,
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If we let 10000 fish with an initial growth rate of 3.2 cultivate for 20 years, the
population of growth would be:

Year Population of Fish Growth Rate
t U7 =(-0.000044 % u, +3.64) X u, r, =-0.000044 % u, +3.64
0 10000 2.9
1 32000 2.232
2 71424 0.497344
3 35522.29786 2.077018894
4 73780.48382 0.393658712
5 29044.33023 2.36204947
6 68604.14483 0.621417628
7 42631.82492 1.764199703
8 75211.05288 0.330713673
9 24873.32356 2.545573763
10 63316.87986 0.854057286
11 54076.24259 1.260645326
12 68170.96248 0.640477651
13 43661.97792 1.718872972
14 75049.39373 0.337826676
15 25353.68721 2.524437763
16 64003.80542 0.823832562
17 52728.41897 1.319949565
18 69598.8537 0.577650437
19 40203.80828 1.871032436
20 75222.62933 0.33020431

Although normally, I would look for a logistic function, however, seeing the fluctuation
of results after seeing the graph (see next page), I have concluded that the fluctuations
and oscillations of population of fish around the sustainable limit is far too great for the
estimated logistic function to be precise, and the function obtained would have so much
error that no conjectures or generalisations can be formed from it.
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Following the same method as above, the graph for an initial growth rate of 3.2 is:

Population of Fish vs. Time
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During smaller initial growth rates (i.e. r = 1.5, 2, 2.3, 2.5), it can be said that over time,
the population size of fish will settle down and converge at a population of 60000.

When we look at higher initial growth rates however, (i.e. r = 2.9, 3.2), the population of
fish does not converge towards the sustainable limit, but fluctuates around it. Looking at
the graph for 1=2.9, we see that these fluctuations in fact, get larger, until it settles down
at a certain limit. The same can be said for the graph for r=3.2, where the population of
fish oscillates in a pattern over time.



Model for Growth Rate = 3.5

When we have a new initial growth rate, the ordered pairs i.e. (uy,, 1,) have now changed
yet again to:

(60000, 1)
(10000, 3.5)

To find the linear growth factor, we form the two equations:

3.5 =m(10000) + b
1 = m(60000) + b
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Using the GDC to solve this, we have that m =-0.00006 and b = 4.6 so the linear growth
factor is:

I, = -0.00006 x u, + 4.6

and therefore the function for u,; for is:

Upe1 = (-0.00006 X u, + 4.6) uy

If we let 10000 fish with an initial growth rate of 3.5 cultivate for a while, the population
of growth would be:

Year Population of Fish Growth Rate
t U+ =(-0.00006 % u, +4.6) x u, r, =-0.00006 % u, +4.6
0 10000 2.9
1 40000 2.2
2 88000 -0.68
3 -59840 N/A
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Putting this in a graph, we have:

Population of Fish vs Time (Initial growth rate of r=4)
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We see that by the third year, the population of fish would have exterminated to 0 (a
negative number of fish is impossible of course). We can conclude from this that as the
initial growth rate of fish increases, the fluctuations and oscillations of population of fish
every year will become greater, so much to the point that the fluctuations may lead to a
population of fish ‘below zero’.

Although we only have data for the three years that the fish existed, the graph shows
hints of trying to take the ‘S-shape’ form as the other graphs did (i.e. r = 2.9, 3.2),
however its growth rate was much too high in the beginning, causing the population of
fish to soar much above the sustainable limit. Since when there are 60000 fish, growth
rate is 1, any population of fish higher than this will result in a growth rate of less than 1
i.e. number of fish will diminish. In this case, the number of fish has diminished to such
an extreme extent that there are no fish left.

So far we have been looking at examples where a population of fish has been left alone to
cultivate. In real life situations however, it is most likely that governments or other
organizations would like to harvest from this population of fish. Therefore, another area
that is worthy of our investigation is how a harvest would affect the population of fish in
the lake.
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Let us assume that the population of fish in a lake follows the first model made in this
portfolio. That is:

T10000 = 1.5, Te0000 = 1

this also means that the population of fish follows the equations that I had calculated
before:

rn=-0.00001 x u, + 1.6
and
U1 = (-0.00001 X u, + 1.6) X uy,

Let us say that a government body wishes to harvest from a population of fish, AFTER
its population has settled (i.e. reached its sustainable limit). This means that until there is
60000 fish in the lake, no harvesting will take place, so 60000 is our ‘initial number of
fish’.

Harvest Size of 5000

Imagine that 5000 fish were taken from the lake at the end of each year. How would that
affect the population of fish in the lake? It is best to first draw up a table of values:

Year No. of Fish at beginning of year Rate
t Uy =U, X r,-5000 r, =-0.00001 x u, +1.6
60000 1
55000 1.05
52750 1.0725
51574.375 1.08425625
50919.83843 1.090801616
50543.44203 1.09456558

50323.11193

1.096768881

50192.82314

1.098071769

50115.32208

1.098846779

50069.06026

1.099309397

50041.38846

1.099586115

50024.81595

1.099751841

50014.88341

1.099851166

50008.92783

1.099910722

50005.3559

1.099946441

50003.21325

1.099967867

50001.92785

1.099980722

50001.15667

1.099988433

50000.69399

1.09999306

50000.41639

1.099995836

S|o|x|J|o|a|m| |0 2[B|©|®|N|o| o sw = o

50000.24983

1.099997502
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Putting the data for the population of fish in the last 20 years (following this model) in a
graph, we have:

Populatino of Fish with a Harvest of 5000 Fish per Year
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As we can see from this graph, the long term sustainable limit of fish has dropped from
60000 to approximately 50000. So, in a way, we can say that it is feasible for people to
harvest 5000 fish per annum, as a small harvest such as this would not deplete the
population of fish, even though it will lower the maximum sustainable limit of fish.

Since Rate = -0.00001 % u, +1.6, as the population of fish decrease, the rate of growth
increases so that at some no. of fish, there will be an increase in 5000 fish due to growth,

and a decrease in 5000 fish due to harvest. This leads to a new stable sustainable limit of
fish.

Next, we should explore other harvest sizes to see how they effect the sustainable limit of
the fish population. I will now explore harvest sizes 3000, 4000, 5000 (already done),
6000, 7000, 8000 and 9000.

The general formula for finding population of fish when there is a harvest is:

U= [(-0.00001 % u, + 1.6) * up] — H

where H is the harvest size per year.




Harvest Size of 3000

We first use Excel to tabulate the data for us:

Year | No. of Fish at beginning of year Growth Rate
t Uy =U, < r,-3000 r, =-0.00001 x u, +1.6
60000 1
57000 1.03
55710 1.0429
55099.959 1.04900041

54799.87958

1.052001204

54649.53931

1.053504607

54573.54143

1.054264586

54534.95204

1.05465048

54515.31333

1.054846867

54505.30745

1.054946925

54500.20652

1.054997935

54497.60532

1.055023947

54496.27866

1.065037213

54495.60198

1.05504398

54495.25681

1.055047432

54495.08075

1.0565049192

54494.99094

1.055050091

54494.94513

1.055050549

54494.92176

1.055050782

54494.90984

1.055050902
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54494.90376

1.055050962

Then, putting this into a graph, we have:
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The sustainable limit seems to have dropped to approximately 54494 fish.
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Harvest Size of 4000

We first use Excel to tabulate the data for us:

Year No. of Fish at beginning of year Growth Rate
t Uyt =U, X r, -4000 r, =-0.00001 x u, +1.6
0 60000 1
1 56000 1.04
2 54240 1.0576
3 53364.224 1.06635776
4 52905.35437 1.070946456
5 52658.80178 1.073411982
6 52524.5888 1.074754112
7 52451.01779 1.075489822
8 52410.53579 1.075894642
9 52388.21465 1.076117854

10 52375.8931 1.076241069
11 52369.08718 1.076309128
12 52365.32657 1.076346734
13 52363.24824 1.076367518
14 52362.09952 1.076379005
15 52361.46457 1.076385354
16 52361.11359 1.076388864
17 52360.91958 1.076390804
18 52360.81234 1.076391877
19 52360.75305 1.076392469
20 52360.72028 1.076392797

Then, putting this into a graph, we have:

Population of Fish when a Harvest of 4000 fish per year
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The sustainable limit seems to have dropped to approximately 52360 fish.
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Harvest Size of 6000

We first use Excel to tabulate the data for us:

Year No. of Fish at beginning of year Growth Rate
t Uy =U, X r,-6000 r, =-0.00001 x u, +1.6
0 60000 1
1 54000 1.06
2 51240 1.0876
3 49728.624 1.102714
4 48836.43795 1.111636
5 48288.324 1117117
6 47943.69606 1.120563
7 47723.93377 1.122761
8 47582.55549 1.124174
9 47491.09291 1.125089

10 47431.7096 1.125683
11 47393.0646 1.126069
12 47367.87764 1.126321
13 47351.4459 1.126486
14 47340.71915 1.126593
15 47333.71375 1.126663
16 47329.13742 1.126709
17 47326.14739 1.126739
18 47324.19355 1.126758
19 47322.91673 1.126771
20 47322.08229 1.126779

Then, putting this into a graph, we have:
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This time, the sustainable limit of fish has dropped to approximately 47322 fish.
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Harvest Size of 7000

We first use Excel to tabulate the data for us:

Year | No. of Fish at beginning of year Growth Rate
t Uy =U, <X r,-7000 r, =-0.00001 x u, +1.6
0 60000 1
1 53000 1.07
2 49710 1.1029
3 47825.159 1.12175
4 46647.79607 1.13352
5 45876.30493 1.14124
6 45355.73435 1.14644
7 44997.74857 1.15002
8 44748.42395 1.15252
9 44573.26386 1.15427
10 44449.46366 1.15551
25 44144 .20251 1.15856
26 44143.61786 1.15856
27 44143.1986 1.15857
28 44142.89793 1.15857
29 44142 .68231 1.15857
30 44142 .52768 1.15857
31 44142.41679 1.15858
32 44142.33726 1.15858
33 44142.28023 1.15858
34 44142.23933 1.15858

Then, putting this into a graph, we have:

Population of Fish with a Harvest of 7500 Fish per Year
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The sustainable limit of fish has become somewhere close to 44142 fish.
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Harvest Size of 8000

We first use Excel to tabulate the data for us:

Year No. of Fish at beginning of year Growth Rate
t Uy =U, < r,-8000 r, =-0.00001 x u, +1.6
0 60000 1
1 52000 1.08
2 48160 1.1184
3 45862.144 1.141379
4 44346.06788 1.156539
5 43287.97124 1.16712
6 42522.26944 1174777
7 41954.19712 1.180458
8 41525.16884 1.184748
9 41196.87367 1.188031

10 40943.17387 1.190568
35 40003.36435 1.199966
36 40002.69136 1.199973
37 40002.15302 1.199978
38 40001.72237 1.199983
39 40001.37787 1.199986
40 40001.10227 1.199989
41 40000.88181 1.199991
42 40000.70544 1.199993
43 40000.56434 1.199994
44 40000.45147 1.199995

Then, putting this into a graph, we have:
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The sustainable limit for a harvest size of 8000 is roughly 40000 fish.
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Harvest Size of 9000

We first use Excel to tabulate the data for us:

Year No. of Fish at beginning of year Growth Rate
t Uyt =U, X1, -9000 r, =-0.00001 x u, +1.6
0 60000 1
1 51000 1.09
2 46590 1.1341
3 43837.719 1.16162281
4 41922.89433 1.180771057
5 40501.34024 1.194986598
6 39398.55877 1.206014412
7 38515.2297 1.214847703
8 37790.13833 1.222098617
9 37183.27578 1.228167242
10 36667.28127 1.233327187
7991 30012.49639 1.299875036
7992 30012.49483 1.299875052
7993 30012.49326 1.299875067
7994 30012.4917 1.299875083
7995 30012.49014 1.299875099
7996 30012.48858 1.299875114
7997 30012.48702 1.29987513
7998 30012.48546 1.299875145
7999 30012.48391 1.299875161
8000 30012.48235 1.299875177

Then, putting this into a graph, we have:
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The new sustainable limit lies at approximately 30012.
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From these tables and graphs, we realize that for every harvest size, there is a new
sustainable limit, and in fact we can make generalizations about these as well, first by
drawing a table as follows:

Harvesting Size Approximate Sustainable Limit
0 60000
1000 ?
2000 ?
3000 54494
4000 52360
5000 50000
6000 47322
7000 44142
8000 40000
9000 30000

It is obvious from this that as the harvesting size increases, the sustainable limit decreases.
This is feasible will our common sense as well, since as more fish are taken away, growth
rate needs to be higher to make up for the harvest; the smaller the population of fish, the
greater the growth rate.

Anyhow, putting these values in a graph, we have:

The Effect of Harvesting Size on Final Sustainable Limit of Fish
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From the graph, however, we can also see that the relationship between the sustainable
limit of fish and annual harvest size is NOT directly proportional, but instead seems to be
a quadratic, as the line is shaped like an inverse parabola.
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With this new information I have achieved, I can now continue to explore the effects of
harvests of fish, in realistic conditions. If a government body wished to harvest from the
lake of fish, it is most important to find the maximum harvest of fish which would allow

for the population of fish to remain i.e. the fish population will not deplete.

First of all, I decided to use a ‘trial and error’ method of approaching this question. Since
earlier | had shown that a harvest of 9000 would NOT deplete the fish population, the
investigation of a harvest size of 10000 was next.

Harvest Size of 10000

As before, I used Excel to tabulate the data for us:

Year

No. of Fish at beginning of year

Growth Rate

t

Uy =U, X1, -10000

r, =-0.00001 % u, +1.6

60000 1
50000 1.1
45000 1.15
41750 1.1825
39369.375 1.20630625

37491.52312

1.225084769

35930.29393

1.240697061

34578.61007 1.254213899
33368.97337 1.266310266
32255.47356 1.277445264

31204.60195

1.287953981

30190.09129

1.298099087

29189.72994

1.308102701

28183.16456

1.318168354

27150.15565

1.328498443

26068.93953 1.339310605
24914.40716 1.350855928
23655.77462 1.363442254
22253.28266 1.377467173

20653.16636

1.393468336

18779.53337

1.412204666

16520.54466

1.434794553

13703.5875 1.462964125
10047.85689 1.499521431
5066.97675 1.549330233
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-2149.579734

1.621495797

In the 25" year, the population of fish reached a value below zero! In reality, this is
impossible because you cannot have a ‘negative number of fish’. In other words, the
number of fish left in the lake is zero.
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When we put this into a graph, we can represent this more clearly:

Population of Fish with Harvest 10000 Fish per Year
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The initial downfall of population due to harvest led to a rather sharp decline in
population size. However as population of fish decreased, rate of growth became larger,
hence the slope of the curve ‘flattening out’.

After a few years however, (namely at year 13), the decrease in population size began to
speed up again. Even though the growth rate may be large, the growth rate is a percentage
of the existing population.

In this case, the population has become so small that even a large growth rate cannot
overcome the 10000 annual fish harvest, and so the population of fish will die out.

It is important to realize that a ‘trial and error’ approach is not the most effective way to
method to find the ‘maximum annual harvest size’ for fish in the lake, as you would have
to test every single harvest size.

The next thing to be done was to consider the function model for the population size of
the fish in the lake. When we look closely at the equation we gave for u,:;, we find that it
is in fact, a quadratic equation, see below:

I had stated earlier that the general equation to finding the population of fish in a lake
while there is an annual harvest is:




‘ Marked by Teachers

U1 =[(-0.00001 x u, +1.6) X u,] - H

where up:) is the total population of fish in the next year
where H is the size of annual harvest

The ‘Sustainable Limit’ of a population means that given more time, the population will
remain constant. In other words, growth rate = 1.

Since the formula for any geometric population growth models will always take the form
of u,+; =r % u,, and we also have that growth rate is equal to 1 (r=1) when a population
has reached a sustainable limit, we can say that U, = u.

Now, equation for population of fish can become:

un= [(-0.00001 x u, + 1.6) X u,| - H Expanding this, we have:

u,=-0.00001u,” + 1.6u,— H

Now, we must transform this into something we can work with. To make this a quadratic
equation, we must make it take the form ax’ + bx + ¢ = 0. So our equation becomes:

-0.00001u,” + 0.6u,— H =0
Since the equation we have is a quadratic, it is very important to consider its discriminant.
Recalling our theory on quadratics, we know that if the discriminant is:

A > 0, quadratic has 2 solutions

A =0, quadratic has 1 solution

A <0, quadratic has 0 solutions.

2

Anyhow, A = b’ — 4ac if the quadratic takes the form ax’ + bx + ¢ = 0. So, in our

situation, the discriminant is equal to:

A =0.6> — 4(-0.00001)(-H)
A =0.6> - 0.00004H

To find the maximum annual harvest size, our aim is to maximise the value of H. In
saying this, we must also ensure that our quadratic equation has at least 1 solution.
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By speculation, we can see that as H is bigger, A becomes smaller (b>- 4aH) — in other
words, we are looking for the value of H where A is as small as possible, but still has
solutions; A must equal 0.

Solving this equation:

0.6 — 0.00004H = 0
0.6 = 0.00004H
9000 = H

According to quadratic theory, the maximum annual harvest of fish from the lake is 9000
fish per year. To prove this, we should once again turn to Excel to give us some data on
the population sizes over time.

This table has already been done previously, however it is useful to place the table in this
section as well, as it is of vital importance to finding the maximum harvest size

Year No. of Fish at beginning of year Growth Rate
t Uyt =U, X1, -9000 -0.00001 < u, +1.6
0 60000 1
1 51000 1.09
2 46590 1.1341
3 43837.719 1.16162281
4 41922.89433 1.180771057
5 40501.34024 1.194986598
6 39398.55877 1.206014412
7 38515.2297 1.214847703
8 37790.13833 1.222098617
9 37183.27578 1.228167242
10 36667.28127 1.233327187
7991 30012.49639 1.299875036
7992 30012.49483 1.299875052
7993 30012.49326 1.299875067
7994 30012.4917 1.299875083
7995 30012.49014 1.299875099
7996 30012.48858 1.299875114
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7997 30012.48702 1.29987513
7998 30012.48546 1.299875145
7999 30012.48391 1.299875161
8000 30012.48235 1.299875177

Then, putting this into a graph, we have:

Population of Fish with a Harvest size of 9000 per Year
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This graph shows that it IS in fact feasible to harvest at 9000 fish a year, as the
population of fish will NOT deplete.

Next, I will show that any harvest size greater than 9000 will lead to a depletion of the
fish population.

Harvest Size 0f 9001

Year No. of Fish at beginning of year Rate
t Uy =U, X 1, -9001 -0.00001 x u, +1.6
0 60000 1
1 50999 1.09001
2 46588.42 1.134116
3 43835.66 1.161643
4 41920.41 1.180796
5 40498.45 1.195016
6 39395.27 1.206047
7 38511.56 1.214884
8 37786.09 1.222139
9 37178.86 1.228211
10 36662.5 1.233375

980 18765.02 1.41235
981 17501.77 1.424982




982 15938.71 1.440613
983 13960.51 1.460395
984 11386.86 1.486131
985 7921.366 1.520786
986 3045.705 1.569543
987 -4220.64 1.642206

We can also represent this in a graph, as there is too much data for all of it to fit on a
table.

Population of Fish with Annual Harvest of 9001
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With a harvest size of 9001, we see that the fish population will deplete over time, and
although slowly, after a period of 987 years, the population of fish WILL be 0. As
‘number of fish’ is a discrete value (i.e. it cannot have any decimal places), this proves
that 9000 is the maximum harvest size.

Now, as a final check, I will solve the quadratic formula for u,, by substituting the
harvest size H = 9000. This is because even though the theory may show that this answer
is correct, our population size u, must be between 0 and 60000. This is because our
population cannot be negative, nor can it exceed the sustainable limit.

-0.00001u,” + 0.6u,— 9000 = 0

Solving this on the GDC, we have:

EHE+EF+E=? ] aHE+EH+c=E
CEEE 0.6 -90003 | CELTLEN =2
-1le-A5 SEEAA

[for AW LR [EDIT REFT
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Since we have that u, = 30000 (there is only 1 solution because A = 0), which is in
between 0 and 60000, the conjecture that 9000 is the maximum harvest size in this
particular lake, is sufficiently proven.

Taking a closer look, we can also see that the value for u, as solved previously on our
GDC (u,= 30000) is also equal to our new sustainable limit when a 9000 annual harvest
is in place.

In realistic situations, government bodies may not be patient enough to wait for the
population of fish to settle before harvesting. For examples where I had allowed the
population of fish to settle, I used 60000 as my initial population size. In the next few
examples, I will be changing the initial population to see its effects on population size of
fish.

Using the first model for the population of fish in a lake (ri0000 = 1.5, 160000 = 1), and a
harvest size of 8000, I will investigate the effects of different initial population sizes.

I will now consider initial population sizes of 10000, 20000, 30000, 40000 and 50000.
Initial Population of 10000 with an Annual Harvest of 8000

Instead of using an initial population size of 60000, it is now changed to 10000. The rate
of growth is still the same due to the fact that the same model is used. Using excel to get
some data, we have:

Year | No. of Fish at beginning of year Growth Rate
t Uyi] =U, X r,-8000 r, =-0.00001 xu, +1.6
0 10000 1.5
1 7000 1.53
2 2710 1.5729
3 -3737.441 1.63737441

Putting this into a graph, we can see:
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Initial Population of 10000 Fish and Harvest of 8000
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It is clear from the graph that the rate at which the fish population depletes quicker and
quicker. This is because a small amount of fish, no matter how large the growth rate,
cannot overcome the harvest of 8000. By the third year, the fish population has already
depleted. With a harvest of 8000, the government can NOT start an annual harvesting
8000 fish when the population of fish is 10000.

Initial Population of 20000 with an Annual Harvest of 8000

Using Excel to get a data table:

Year | No. of Fish at beginning of year Rate
t Up+1 =ty X 1y ~8000 r, = -0.00001 xu, +1.6
0 20000 14
1 20000 1.4
2 20000 14
3 20000 14

A rather peculiar result appears. At a population of 20000, the growth rate is found to be
1.4, which means that over the next year, the population of fish will increase by
20000%0.4 = 8000. This is exactly the harvest size by the government, so the population
of fish will remain at an exactly stable rate. Therefore it is feasible that the government



can start harvesting when population of fish is 20000. From this result, we can claim that
the sustainable limit for a harvest of 8000 fish is 2000 — or can we?

The most vital part of this investigation is to realize that the function for population of
fish is still a quadratic! In other words, it has 2 solutions (with the exception of a harvest
0f 9000 when A = 0). This can be explained when we solve the quadratic equation for a
harvest size of 8000:

0.00001u,” + 0.6u,— H =0

0.00001u,” + 0.6u,— 8000 =0

a“E2+h¥+c=A aHE+I:nH:=-’.+i:=EI
4 -] c
B T uoooo
| - |E-5| 0.5 -BO003 E[_EI]I:II:II:I |
-1e-85 4HEAER
[For AW [CLR [EDIT REFT

We see that there are 2 possible solutions to this quadratic equation: 20000 and 40000.
Earlier when I was investigating maximum harvest sizes, I found (but not proved) that the
solutions to the quadratic gave the long term sustainable limits for a population of fish.

For a harvest of 8000 fish, we can hypothesise that another sustainable limit is at 40000
fish.

Initial Population of 30000 with an Annual Harvest of 8000

Using Excel to get a data table:

Year | No. of Fish at beginning of year Growth Rate
t Uyi] =U, X1, -8000 r, =-0.00001 xu, +1.6
0 30000 1.3
1 31000 1.29
2 31990 1.2801
3 32950.399 1.2705
4 33863.35046 1.26137
5 34714.09569 1.25286
6 35491.86871 1.24508
7 36190.26249 1.2381
8 36807.06899 1.23193
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9 37343.70711 1.22656
10 37804.40677 1.22196
42 39997.98901 1.20002
43 39998.39117 1.20002
44 39998.71291 1.20001
45 39998.97031 1.20001
46 39999.17624 1.20001
47 39999.34098 1.20001
48 39999.47278 1.20001
49 39999.57822 1.2
50 39999.66258 1.2

In a graph, we can show this as:
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As we can see from this data, it is true that 40000 is also a sustainable limit.

Initial Population of 40000 with an Annual Harvest of 8000

Since we found that 40000 is in fact a sustainable limit, it comes to no surprise that the

data table is as follows:

Year | No. of Fish at beginning of year Growth Rate
J Ups ) =Uy X 1, -8000 r, = -0.00001 xu, +1.6
0 40000 1.2
1 40000 1.2
2 40000 1.2
3 40000 1.2
4 40000 1.2

The population of fish will increase by 40000x0.2 = 8000. This is exactly the harvest size
by the government, so the population of fish will remain at an exactly stable rate.
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Initial Population of 50000 with an Annual Harvest of 8000

Using Excel to get a data table:

Year | No. of Fish at beginning of year Rate

t Uyt =U, X1, -8000 r, =-0.00001 xu, +1.6

0 50000 1.1

1 47000 1.13

2 45110 1.1489

3 43826.879 1.16173121
4 42915.05317 1.170849468

5 42247.06719 1.177529328

6 41747.16064 1.182528394

7 41367.20281 1.186327972
8 41075.06981 1.189249302
33 40003.80491 1.199961951
34 40003.04378 1.199969562
35 40002.43493 1.199975651
36 40001.94789 1.199980521
37 40001.55827 1.199984417
38 40001.24659 1.199987534
39 40000.99726 1.199990027
40 40000.7978 1.199992022

Putting this into a graph, we have:
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Any initial population of above 40000 will converge to the sustainable limit 40000.
If the harvest begins at any initial population of below 20000, the stock of fish will be
depleted over time.

Anything above 20000 will lead the fish to cultivate and reach the sustainable limit of
40000. Only when initial population is 20000 will population stay constant at 20000.

At this stage, one may be thinking ‘If growth rates are higher when there is a small
population, and lower when there is a high population, why is it possible to have 2
sustainable limits?’

The answer to the question is quite obvious — the rate of growth will be high, however the
real increase in no. of fish is dependant on the number of fish present.

No. of Fish Growth Rate Real Increase in Fish

U, r, =-0.00001 xu,, +1.6 Increase = u,x r, - u,
0 1 0

10000 1.5 5000

20000 1.4 8000

30000 1.3 9000

40000 1.2 8000

50000 1.1 5000

60000 1 0
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Although it is true that the growth rate of fish will increase as the no. of fish decreases, if
we look at the next graph, the real increase in fish is not the same.
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Real Increase in Fish vs. No. of Fish
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This graph shows that as population increases, the initial increase in fishes goes up,
however after a population of 30000 fish, the increase in number of fish begins to slow

down. It takes the shape of an inverse parabola.

This helps us explain a lot of things, especially the shape of the graphs throughout this
portfolio. Taking the graph for our first model (Initial growth rate of 1.5), we see that the
population of fish increases quicker and quicker, however flattens out afterwards until it

reaches a limit at 60000.

Using the data that I calculated about real increase in fish, we can now see that the point
at which the increase in population size begins to slow down is after population reaches

30000. This coheres with my information about the real growth of fish.
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This also helps to explain why it is possible for there to be 2 sustainable limits for one
harvest size. Looking back at our table for real increase of fish, we see that there are two
points in which a real increase of 8000 fish can be reached. This is at growth rates 1.4 and
1.2; when population size is 20000 or 40000.

From this, we can also say that if there were to be an annual harvest of 5000 fish, the new
possible sustainable limits would be 10000 and 50000, as they are the points at which
there is an increase of 5000 fish per year, nullifying the harvest.

For a harvest of 9000 however, the only way to allow the real growth rate to reach 9000
is when population is 30000, there is only one solution. So, for a harvest size of 9000,
there is only one sustainable limit.

For any harvest size, the way to find out when it is feasible to begin harvesting is by
solving the quadratic equation model of the population of fish. The two (or one) values
that we obtain for u, are the sustainable limits. It is only possible to begin harvesting
when the population has reached the lower sustainable limit i.e. the smaller solution. Any
harvest starting before this population is reached will lead to a depletion of fish. Any
harvest starting when population is above this will lead to a convergence of the
population of fish and the higher sustainable limit i.e. the larger solution.



