Chromatography Experiment

<u>Title:</u> separation of pigments of photosynthesis using paper chromatography.

Goal (main aim):

Calculating the R_f of every single pigment, in order to distinguish it and identify its solubility.

Hypothesis:

In photosynthesis; two types of pigments are involved; chlorophyll (A or B) and carotenoids, by using paper chromatography we can distinguish each pigment, by measuring the color's R_f ; referring to the next formula:

$$R_{f} = \frac{\text{Distance between the starting point and pigment line}}{\text{Distance between the starting point and the solvent fonte}}$$

Variables:

Independent variable:

- Pigment solubility.

Dependent variable:

- The distance that the pigments move, on the chromatography paper.

Controlled variables:

<u>VARIABLE</u>	WAY OF CONTROL
Temperature	The experiment will be
	carried out in room
	temperature.
Solvent volume	In order to minimize
	uncertainty; the solvent will
	be added using a pipette.
Volume & concentration of	The extraction sample will be

extraction	taken using the same
	tweezers.

Materials and procedure:

Materials:

- 1- Chromatography Jar.
- 2- Plant.
- 3- Chromatography paper.
- 4- Solvent (organic).
- 5- Tweezers.
- 6- Pipette.
- 7- Mortar and Pestle.
- 8- Scissors.
- 9- Ruler.
- 10- Calculator.

Procedure:

- Preparation of the mixture:
- 1- Place a piece of the obtained plant leave into the pestle.
- 2- Add 5ml (approx.), of 90% isopropyl alcohol.
- Preparation of the chromatogram:
- Attain a chromatography paper.
- Cut the paper, in order to have a triangular end.
- Draw a line above the triangular end, with 1 cm, draw a point in the center of that line, the previous line is considered the start line.
- By tweezers, take an extraction sample, put in on the center of the start line.
- Wait until the pigments of the sample are absorbed.
- By a pipette, pour 1 mm (approx.) of the solvent, into the chromatography jar.
- Insert the chromatography paper (containing the pigments of the extraction), in the chromatography jar until the triangular

- end is totally emerged by the solvent. (Keep in mind not to let the extraction pigments touch the solvent).
- Close the jar firmly, to prevent solvent evaporation.
- Wait, until the pigments start dissolving, as a result of the solvent elevating on the paper.
- When the solvent is 1 cm away from your paper's top, take the papers out and mark the farthest point of the solvent's elevation (solvent front). (Make sure you mark quickly before the line evaporates).
- Repeat the previous steps for more results.
- Calculate R_f using the following formula:

$$R_{f} = \frac{\text{Distance between the starting point and pigment line}}{\text{Distance between the starting point and the solvent fonte}}$$

- Put your results in the form of a table.
- Compare results with the standard R_f table. (This helps to determine the type of pigment obtained).

Data collection and processing:

Points of each color appearance	1 st trial Solvent front=6 ±0.05 <i>cm</i>		2 nd trial Solvent front=6 ±0.05 <i>cm</i>	
	d	R_{f}	D	$R_{\rm f}$
X ₁	$2.5 \pm 0.05cm$	0.42±0.01	3.5±0.05cm	0.58±0.01
X ₂	$4.8 \pm 0.05cm$	0.80 ± 0.01	4.0±0.05cm	0.67±0.01
X ₃	$4.9 \pm 0.05cm$	0.82 ± 0.02	$5.8\pm0.05cm$	0.96 ± 0.02

Table(1): experiment's raw data

- (d): distance that the pigment moved.
- Uncertainty of solvent front:

$\frac{minimum \, reading \, of \, the \, ruler}{2}$

The average of the R_{f:}

$$\frac{1st\ trial\ result + 2nd\ trial\ result}{2}$$

Points of each color appearanc	1 st trial Solvent front=6 ±0.05 <i>cm</i>		2 nd trial Solvent front=6 ±0.05 <i>cm</i>		Average	The closest value in the standard R _f table
е	D	R _f	D	R_{f}	R_f	
X ₁	2.5 ±0.05 <i>cm</i>	0.42±0.01	3.5±0.05 <i>cm</i>	0.58±0.01	0.50 ±0.05	(0.45) Chlorophyll b
X_2	4.8 ±0.05 <i>cm</i>	0.80±0.01	4.0±0.05cm	0.67±0.01	0.70 ±0.005	(0.65)Chlorophyll a
X ₃	4.9 ±0.05cm	0.82±0.02	5.8±0.05cm	0.96±0.02	0.89±0.02	(0.83)Phaetophytin

Table(2): experiment's quantitative results

Conclusion and evaluation:

Conclusion:

- 1- Photosynthetic pigments can be separated using paper chromatography, which is shown by results in table (1).
- 2- The average (R_f) of (X1) (0.50±0.05) and (X2)(0.70±0.05), can be considered close to the standard (R_f) (0.45) and (0.65) respectively, which shows that the method used to calculate (R_f) in the hypothesis is valid.

Evaluation:

- In table (1), a clear difference can be seen between the reults of the 1st and 2nd trials, and also between the average (R_f) of (X3) and the standard (R_f), which shows the occurrence of errors, those errors could be:
- To cut a triangular end, a pair of scissors was used; using a pair of scissors doesn't always guarantee the formation of an isosceles triangle, which affected the elevation (diffusion), of the solvent up the paper.
- Since tweezers were used to add the extraction samples, it had a huge possibility of uncertainty when it comes to the equality of the volume taken for the two trials.
- A ruler was used to measure the distance moved by each pigment, and this contains a pretty much big amount of uncertainty involved.