Chromatography Experiment <u>Title:</u> separation of pigments of photosynthesis using paper chromatography. #### Goal (main aim): Calculating the R_f of every single pigment, in order to distinguish it and identify its solubility. ### **Hypothesis:** In photosynthesis; two types of pigments are involved; chlorophyll (A or B) and carotenoids, by using paper chromatography we can distinguish each pigment, by measuring the color's R_f ; referring to the next formula: $$R_{f} = \frac{\text{Distance between the starting point and pigment line}}{\text{Distance between the starting point and the solvent fonte}}$$ ### Variables: #### Independent variable: - Pigment solubility. #### Dependent variable: - The distance that the pigments move, on the chromatography paper. #### Controlled variables: | <u>VARIABLE</u> | WAY OF CONTROL | |---------------------------|-------------------------------| | Temperature | The experiment will be | | | carried out in room | | | temperature. | | Solvent volume | In order to minimize | | | uncertainty; the solvent will | | | be added using a pipette. | | Volume & concentration of | The extraction sample will be | | extraction | taken using the same | |------------|----------------------| | | tweezers. | # Materials and procedure: #### Materials: - 1- Chromatography Jar. - 2- Plant. - 3- Chromatography paper. - 4- Solvent (organic). - 5- Tweezers. - 6- Pipette. - 7- Mortar and Pestle. - 8- Scissors. - 9- Ruler. - 10- Calculator. #### Procedure: - Preparation of the mixture: - 1- Place a piece of the obtained plant leave into the pestle. - 2- Add 5ml (approx.), of 90% isopropyl alcohol. - Preparation of the chromatogram: - Attain a chromatography paper. - Cut the paper, in order to have a triangular end. - Draw a line above the triangular end, with 1 cm, draw a point in the center of that line, the previous line is considered the start line. - By tweezers, take an extraction sample, put in on the center of the start line. - Wait until the pigments of the sample are absorbed. - By a pipette, pour 1 mm (approx.) of the solvent, into the chromatography jar. - Insert the chromatography paper (containing the pigments of the extraction), in the chromatography jar until the triangular - end is totally emerged by the solvent. (Keep in mind not to let the extraction pigments touch the solvent). - Close the jar firmly, to prevent solvent evaporation. - Wait, until the pigments start dissolving, as a result of the solvent elevating on the paper. - When the solvent is 1 cm away from your paper's top, take the papers out and mark the farthest point of the solvent's elevation (solvent front). (Make sure you mark quickly before the line evaporates). - Repeat the previous steps for more results. - Calculate R_f using the following formula: $$R_{f} = \frac{\text{Distance between the starting point and pigment line}}{\text{Distance between the starting point and the solvent fonte}}$$ - Put your results in the form of a table. - Compare results with the standard R_f table. (This helps to determine the type of pigment obtained). #### Data collection and processing: | Points of each color appearance | 1 st trial
Solvent front=6 ±0.05 <i>cm</i> | | 2 nd trial
Solvent front=6 ±0.05 <i>cm</i> | | |---------------------------------|--|-----------------|--|-----------------| | | d | R_{f} | D | $R_{\rm f}$ | | X ₁ | $2.5 \pm 0.05cm$ | 0.42±0.01 | 3.5±0.05cm | 0.58±0.01 | | X ₂ | $4.8 \pm 0.05cm$ | 0.80 ± 0.01 | 4.0±0.05cm | 0.67±0.01 | | X ₃ | $4.9 \pm 0.05cm$ | 0.82 ± 0.02 | $5.8\pm0.05cm$ | 0.96 ± 0.02 | Table(1): experiment's raw data - (d): distance that the pigment moved. - Uncertainty of solvent front: # $\frac{minimum \, reading \, of \, the \, ruler}{2}$ The average of the R_{f:} $$\frac{1st\ trial\ result + 2nd\ trial\ result}{2}$$ | Points of each color appearanc | 1 st trial Solvent front=6 ±0.05 <i>cm</i> | | 2 nd trial Solvent front=6 ±0.05 <i>cm</i> | | Average | The closest value
in the standard
R _f table | |--------------------------------|--|----------------|---|-----------|----------------|--| | е | D | R _f | D | R_{f} | R_f | | | X ₁ | 2.5 ±0.05 <i>cm</i> | 0.42±0.01 | 3.5±0.05 <i>cm</i> | 0.58±0.01 | 0.50
±0.05 | (0.45) Chlorophyll
b | | X_2 | 4.8 ±0.05 <i>cm</i> | 0.80±0.01 | 4.0±0.05cm | 0.67±0.01 | 0.70
±0.005 | (0.65)Chlorophyll a | | X ₃ | 4.9 ±0.05cm | 0.82±0.02 | 5.8±0.05cm | 0.96±0.02 | 0.89±0.02 | (0.83)Phaetophytin | ## Table(2): experiment's quantitative results # Conclusion and evaluation: #### Conclusion: - 1- Photosynthetic pigments can be separated using paper chromatography, which is shown by results in table (1). - 2- The average (R_f) of (X1) (0.50±0.05) and (X2)(0.70±0.05), can be considered close to the standard (R_f) (0.45) and (0.65) respectively, which shows that the method used to calculate (R_f) in the hypothesis is valid. #### Evaluation: - In table (1), a clear difference can be seen between the reults of the 1st and 2nd trials, and also between the average (R_f) of (X3) and the standard (R_f), which shows the occurrence of errors, those errors could be: - To cut a triangular end, a pair of scissors was used; using a pair of scissors doesn't always guarantee the formation of an isosceles triangle, which affected the elevation (diffusion), of the solvent up the paper. - Since tweezers were used to add the extraction samples, it had a huge possibility of uncertainty when it comes to the equality of the volume taken for the two trials. - A ruler was used to measure the distance moved by each pigment, and this contains a pretty much big amount of uncertainty involved.