Computer systemm
Wit 2
NSSESSMN@MT 2

1. Twos compliment

Two's complement is the most popular method of signifying negative integers in
computer science. It is also an operation of negation (converting positive to negative
numbers or vice versa) in computers which represent negative numbers using two's
complement. Its use is ubiquitous today because it doesn't require the addition and
subtraction circuitry to examine the signs of the operands to determine whether to add
or subtract, making it both simpler to implement and capable of easily handling higher
precision arithmetic. As well, 0 has only a single representation, obviating the
subtleties associated with negative zero.

In the two's complement representation, the most significant bit of a signed binary
value indicates the sign. If the sign bit is zero, the value is non-negative binary
number. If the most significant (leftmost) bit is 1, the value is negative: the bits
contain a two's complement version of the value. To obtain the value of a negative
number, all the bits are inverted then 1 is added to the result. If all bits are one the
value is negative one; if the sign bit is on but the rest of the bits are off the value is the
most-negative number. The most negative number cannot be represented as a positive
number with the same number of bits.

A signed 8-bit binary numeral can represent every integer in the range —128 to +127.
If the sign bit is 0, then the largest value that can be stored in the remaining seven bits
is2”—1, or 127.

Using two's complement to represent negative numbers allows only one
representation of zero, and to have effective addition and subtraction while still having
the most significant bit as the sign bit.

2.Hexadecimal
Hexadecimal numbers are used for the benefit of human programmers, as they are
easier to handle than long strings of binary 1s and Os - with less chance of making an

error. Hexadecimal numbers might be used in printouts of a machine code program
which a programmer needs to check or amend.

A common use of hexadecimal numerals is found in HTML and CSS. They use
hexadecimal notation (hex triplets) to specify colours on web pages; there is just the #

Y:\svn\trunk\engine\docs\working\acumen5\133270.doc\Manmeet Kaur\5/9/2007 1

symbol, not a separate symbol for "hexadecimal". Twenty-four-bit color is
represented in the format #RRGGBB, where RR specifies the value of the Red
component of the color, GG the Green component and BB the Blue component. For
example, a shade of red that is 238,9,63 in decimal is coded as #EE093F. This syntax
is borrowed from the X Window System.

In URLSs, special characters can be coded hexadecimally, with a percent sign used to
introduce each byte; e.g., http://en.wikipedia.org/wiki/Main%20Page

The canonical written form of numeric IPv6 addresses represents each group of 16
bits as a separate hexadecimal number, to ease reading and transcription of the 128-bit
addresses.

When working with computers we often need to deal with binary data. It is much
easier to handle numbers in hexadecimal than in binary (just think of lots of '0's and
'l's) and whilst we are more familiar with the base 10 system, it is much easier to map
binary to hexadecimal than to decimal since each hexadecimal digit maps to a whole
number of bits (4).

Consider converting 11115 to base 10. Since each position in a binary (base 2) number
can only be either a 1 or 0, its value may be easily determined by its position from the
right:

e 0001,=10
o 00102:210
L] 01002:410
. 10002: 810
Therefore:
11112 :810+410+210+ 110
=1510

This is a very simple example which still requires the addition of 4 numbers; whereas,
with some practice, 1111, can be mapped directly to F¢ in one step. When the binary
number is very much greater, conversion to decimal becomes very much more
tedious; however, when mapping to hexadecimal, it is simple to divide the binary
number up in blocks of 4 positions and map each block of 4 bits to a single position
hexadecimal number. For example a tedious conversion to decimal:

= 262144,y + 65536,y + 3276819 + 16384, + 8192, +
204810 + 51210 +25610 + 6410 + 1610 + 210

= 38792210

01011110101101010010

O0Compared to the conversion to hexadecimal:
01011110101101010010, = 0101 1110 1011 0101 0010,
=5 E B 5 216
= 5EB5216

Conversion from hexadecimal back to binary is just as direct.

Y:\svn\trunk\engine\docs\working\acumen5\133270.doc\Manmeet Kaur\5/9/2007 2

3a. Numeric

When an input is numeric, it is important that it has to be valid for example if a
number was to be entered it cannot be in text form, as calculation will not work and
the output will be un-valid.

Numeric data may have character-oriented or binary representations. In the former,
the number "27" would be represented by two pairs of (typically) 6 or 8 bits, one set
representing the character "2" and the other set the character "7". One example of this
kind of representation is known as "ASCII" characters. ASCII is the abbreviation for
the "American Standard Code for Information Interchange". Specific information
about character representations is documented here for various formats

Binary Data uses sets of N bits (N is typically 16, 18, 32, 36, 48, or 60 bits - or more!)
to represent numbers of a wide range of sizes. Binary representations may be pure
integer numbers or floating point numbers.

3b ASCII

ASCII stands for the American Standard Code for Information Interchange, and is
pronounced with a hard ‘c’ sound, as ask-ee. As a standard, ASCII was first adopted
in 1963 and quickly became widely used throughout the computer world.

ASCII is a way of defining a set of characters, which can be displayed by a computer
on a screen, as well as some control characters, which have special functions. Basic
ASCII uses seven bits to define each letter, meaning it can have up to 128 specific
identifiers, two to the seventh power. This size was chosen based on the common
basic block of computing, the byte, which consists of eight bits. The eighth bit was
often set aside for error-checking functions, leaving seven remaining for a character
set.

Thirty-three codes in ASCII are used to represent things other than specific characters.
The first 32 (0-31) represent things ranging from a chime sound, to a line feed
command, to the start of a header. The final code, 127, represents a backspace.
Beyond the first 31 bits are the printable characters. Bits 48-57 represent the numeric
digits. Bits 65-90 are the capital letters, while bits 97-122 are the lower-case letters.
The rest of the bits are symbols of punctuation, mathematical symbols, and other
symbols such as the pipe and tilde.

ASCII began in theory as a simpler character set, using six rather than seven bits.
Ultimately it was decided that the addition of lower-case letters, punctuation, and
control characters would greatly enhance its usefulness. Not long after its adoption,
much discussion arose about possible replacements and adaptations of ASCII to
incorporate non-English and even non-Roman characters. As early as 1972 an ISO
standard (646) was created in an attempt to allow a greater range of characters. A
number of problems existed with ISO-646, however, leaving it by the wayside.

The current leading contender for replacing ASCII is the Unicode character set. This
standard allows for essentially unlimited characters to be mapped by using collections
of bytes to represent a character, rather than a single byte. The first byte of all
Unicode standards remains dedicated to the ASCII character set, however, to preserve
backward compatibility.

Y:\svn\trunk\engine\docs\working\acumen5\133270.doc\Manmeet Kaur\5/9/2007 3

ASCII is now most often heard in the phrase ASCII art. This describes the use of the
basic character set to create visual approximations of images

3c Bit Masks

A bit mask makes use of the fact that binary numbers are made up of 1's and 0's, each
digit in a binary number being equivalent to one bit. This makes binary numbers ideal
for use as “switches” to enable or disable certain facilities.

Binary numbers are always read from right to left, and when used as bit masks the
same is true. The rightmost digit is always bit 0, so taking 1010 as an example bit 0 is

off, bit 1 is on, bit 2 is off and bit 3 is on.

A good example of bit mask usage is when setting the log levels for a particular
service. For example, if you enable all the logging options for the SMTP service you
will end up with the SMTPLog variable set to a value of 4382. Converting 4382 to its

binary equivalent gives 1000100011110, that is bits 1, 2, 3, 4, 8 and 12 are all set.

Bit masks are always converted to their decimal equivalent prior to entering them.

3d Bit Map

A bit map defines a display space and the colon for each pixel or "bit" in the display
space. A Graphics Interchange Format and a JPEG are examples of graphic image file
types that contain bit maps.

A bit map does not need to contain a bit of colour-coded information for each pixel on
every row. It only needs to contain information indicating a new colour as the display
scans along a row. Thus, an image with much solid colour will tend to require a small
bit map.

Because a bit map uses a fixed or raster graphics method of specifying an image, a
user cannot immediately rescale the image without losing definition. A vector graphic
image, however, is designed to be quickly rescaled. Typically, an image is created
using vector graphics and then, when the artist is satisfied with the image, it is
converted to (or saved as) a raster graphic file or bit map.

4. Error in data representation

Input conversion errors arise because the internal representation of a floating-point
value often cannot exactly represent the value being converted. This occurs whenever
the floating-point representation has fewer bits than are needed to hold the value being
converted. The most common source for this form of error is probably base
conversion. For example, the value 0.1 has an infinitely repeating representation as a
base two fraction. If floating-point numbers on our target system use binary
representation we have to cut that infinitely repeating binary fraction off to fit it in a
finite sized floating-point representation, and the resulting value is not exactly 0.1.
But the finite representation affects more than infinite representations. Even if an
input value can be exactly represented in the base used by the floating-point
representation, it can be too long to fit in the number of bits available. In that case it
will also be cut off, and the resulting value will not be exactly right.

Y:\svn\trunk\engine\docs\working\acumen5\133270.doc\Manmeet Kaur\5/9/2007 4

5a. 0110100101000011

The Mantissa is 0.110100101
The Exponent is 000011 which has a value of 3
Moving the binary point of the mantissa by 3 places gives:

0110.100101

1001.011010 Invert
+1 Add

1001.011011

| 0 0 | 0 | 1 0 1 1
4 2 | S 125 10.125 1 0.0625 | 0.03125 | 0.015625

8+1+.25+.125+.03125+.015625=9.484375

Or

The Mantissa is 0.110100101
The Exponent is 000011 which has a value of 3
Moving the binary point of the mantissa by 3 places gives:

0110.100101
Which has value of
256+128+0.5+0.0625+0.015625=384.578125

5b.1110110000111100
The Mantissa has the 1.110110000 which slightly more than 1

The Exponent has a value 111100 in two’s compliment notation. Converting this to its positive
equivalent gives 000011, which equals to 3.
So exponent is therefore -3
Moving the binary point of the mantissa by -3 places gives:
1.110110000 X 27

=1110.110000

0001.001111 Invert
+1 Add

0001.010000

64 132 |16

(o e]
N
[\
i
S
(9,

0.25] 0.125] 0.0625 | 0.03125 | 0.015625

0 0 0 1 10 |1 0 0 0 0

1+0.25=-1.25

Y:\svn\trunk\engine\docs\working\acumen5\133270.doc\Manmeet Kaur\5/9/2007 5

5c. Maximum positive number

512 256 128 64 32 16 8 4 2 1
1 1 1 1 1 1 1 1 1 1
512+256+128+64+32+16+8+4+2+
=1023
6. -2.25 in Normalised form

0 0 0 0 (0 |0 |(O|O|1]0 0 1 0 0

512 (256 | 128 |64 |32 (16|84 |2 |1 0.5 0.25 0.125 | 0.0625
2 25

0000000010/010000 binary

0.000000010

The Mantissa is 0.000000010

The Exponent is 0100 which has a value of 4

Moving the binary point of the mantissa by 4 places gives:

= 0000.000010
1111.111101 Invert
+1 Add
1111.111110
Or
0000000010.010000 binary
1111111101.101111 Invert
-1 Minus

1111111101.101110

7. Floating Point

A floating-point number is a digital representation for a number in a certain subset of
the rational numbers, and is often used to approximate an arbitrary real number on a

Y:\svn\trunk\engine\docs\working\acumen5\133270.doc\Manmeet Kaur\5/9/2007 6

computer. In particular, it represents an integer or fixed-point number (the significant
or, informally, the mantissa) multiplied by a base (usually 2 in computers) to some
integer power (the exponent). When the base is 2, it is the binary analog of scientific
notation (in base 10).

A floating-point calculation is an arithmetic calculation done with floating-point
numbers and often involves some approximation or rounding because the result of an
operation may not be exactly representable.

A floating-point number a can be represented by two numbers m and e, such that a =
m x b°. In any such system we pick a base b (called the base of numeration, also the
radix) and a precision p (how many digits to store). m (which is called the significant
or, informally, mantissa) is a p digit number of the form ?d.ddd...ddd (each digit being
an integer between 0 and b—1 inclusive). If the leading digit of m is non-zero then the
number is said to be normalized. Some descriptions use a separate sign bit (s, which
represents —1 or +1) and require m to be positive. e is called the exponent.

This scheme allows a large range of magnitudes to be represented within a given size
of field, which is not possible in a fixed-point notation.

Fixed point

In computing, a fixed-point number representation is a real data type for a number that
has a fixed number of digits after the decimal (or binary or hexadecimal) point. For
example, a fixed-point number with 4 digits after the decimal point could be used to
store numbers such as 1.3467, 281243.3234 and 0.1000, but would round 1.0301789
to 1.0302 and 0.0000654 to 0.0001.

Fixed-point can exactly represent decimal fractions while still employing the base 2
arithmetic efficient in most of today's computers. Most floating point representations
in computers use base 2 values, which cannot exactly represent most fractions that are
easily represented in base 10. For example, one-tenth (.1) and one-hundredth (.01) can
be represented only approximately by base-2 floating point representations, while they
can be represented exactly in fixed-point representations — one simply stores the data
values multiplied by the appropriate power of 10.

As long as the numeric value uses only the number of digits specified after the
decimal point, fixed-point values can exactly represent all values up to its maximum
value (determined by the number of bits in its representation). This is in contrast to
floating-point representations, which include an automatically-managed exponent but
cannot represent as many digits accurately (given the same number of bits in its
representation).

Advantage of floating poin t notation over fixed point notation

Very few computer languages include built-in support for fixed point values, because
for most applications, floating-point representations are fast enough and accurate
enough. Floating-point representations are more flexible than fixed-point
representations, because they can handle a wider dynamic range. Floating-point
representations are also slightly easier to use, because they do not require
programmers to specify the number of digits after the decimal point.

Y:\svn\trunk\engine\docs\working\acumen5\133270.doc\Manmeet Kaur\5/9/2007 7

