## ENVIRONMENTAL SYSTEMS

**COLÉGIO PLANALTO** 

## Calculating the energy released by a dried fruit

Miguel Peñalta nº 1700 group III

LISBON 05/2006

## **INDEX**

| BACKGROUND                       | 3  |
|----------------------------------|----|
| DATA COLLECTION                  | 4  |
| DATA PROCESSING AND PRESENTATION | 5  |
| EVALUATION                       | 8  |
| BIBLIOGRAPHY                     | 10 |

### **BACKGROUND**

Which is the quantity of energy released from the combustion of dry fruits?

First for making this experience possible there are a few materials that we must have and also there is a method. But as this is already described in the procedure I won't take that into account.

We have several variables, the dependent and independent in which:

Dependent: humidity, mass, To of the water.

Independent: To of the bean (I'll combust the seed)

What I am expecting from this experience?

Well from the beginning I'm not expecting anything because my knowledge cannot afford to make assumptions of that kind, so the only thing that I can mention that will happen is that we have a fried seeds and a burned boiling tube.

## **DATA COLLECTION**

### Group 1

| 1ml H2O=1cm3=1gH2O          | butter bean | bean-caper | brown bean | almond | grain  |
|-----------------------------|-------------|------------|------------|--------|--------|
| To of the water start (°C)  | 21,000      | 21,000     | 21,000     | 21,000 | 21,000 |
| higher to (°C)              | 26,000      | 27,000     | 23,500     | 85,000 | 39,000 |
| weight of the dry fruit (g) | 0,524       | 0,196      | 0,447      | 1,339  | 0,611  |

## Group 2

| 1ml H2O=1cm3=1gH2O          | Butter bean | bean-caper | brown bean | almond | grain |
|-----------------------------|-------------|------------|------------|--------|-------|
| To of the water start (oC)  | 21,5        | 21,5       | 21,5       | 21,5   | 21,5  |
| higher to (oC)              | 33          | 28         | 25         | 86     | 27    |
| weight of the dry fruit (g) | 0,472       | 0,179      | 0,679      | 1      | 0,702 |

### Group 3

| 1ml H2O=1cm3=1gH2O          | butter bean | bean-caper | brown bean | almond | grain |
|-----------------------------|-------------|------------|------------|--------|-------|
| To of the water start (°C)  | 21          | 21         | 21         | 21     | 21    |
| higher to (°C)              | 25          | 30         | 27         | 77     | 34    |
| weight of the dry fruit (g) | 0,557       | 0,283      | 0,558      | 1,254  | 0,564 |

#### Group 4

| 1ml H2O=1cm3=1gH2O         | butter bean | bean-caper | brown bean | almond | grain |
|----------------------------|-------------|------------|------------|--------|-------|
| To of the water start (oC) | 20,5        | 20,5       | 20,5       | 20,5   | 20,5  |
| higher to (°C)             | 27          | 29         | 33         | 95,5   | 39,5  |
| weight of the dry fruit(g) | 0,53        | 0,18       | 0,53       | 1,5    | 0,57  |

## Group 5

| 1ml H2O=1cm3=1gH2O          | butter bean | bean-caper | brown bean | almond | grain |
|-----------------------------|-------------|------------|------------|--------|-------|
| To of the water start (oC)  | 21,5        | 21,5       | 21,5       | 21,5   | 21,5  |
| Higher to (oC)              | 26          | 26,5       | 29         | 95     | 34    |
| weight of the dry fruit (g) | 0,833       | 0,219      | 0,655      | 1,58   | 0,56  |

# DATA PROCESSING AND PRESENTATION

Now as we have the raw data we are going, as mentioned in the title to calculate, how much energy has been released by the combustion of a seed of a dry fruit. There are three elements that we know, the To, the highest To and the weight of the dry fruits; with this data we are going to know and calculate how many kilojoules have been released. For that I'll use two formulas in one it will calculated the heat produced by the whole fruit and the other is how much Kj have been released in only one gram of dry fruit. The formulas are:

$$\frac{20g \times D^{\circ}C \times 4.2kj}{1000}$$
 for the whole fruit and  $\frac{20g \times D^{\circ}C \times 4.2kj}{1000 \times x}$  for only 1 gram of

the dried fruit and in which x is the weight of the dry fruit. Here we can see the tables of the different groups:

#### Group 1

| 1ml H2O=1cm3=1gH2O               |                 | bean-caper |                | almond |           |
|----------------------------------|-----------------|------------|----------------|--------|-----------|
| 11111 1120=1CH15=1gH20           | butter bean (1) | (2)        | brown bean (3) | (4)    | grain (5) |
| t change of water                | 5,000           | 6,000      | 2,500          | 64,000 | 18,000    |
| heat produced by whole nute      | 0,42            | 0,504      | 0,21           | 5,376  | 1,512     |
| heat produced by 1gram of peanut | 0,802           | 2,571      | 0,470          | 4,015  | 2,475     |

#### Group 2

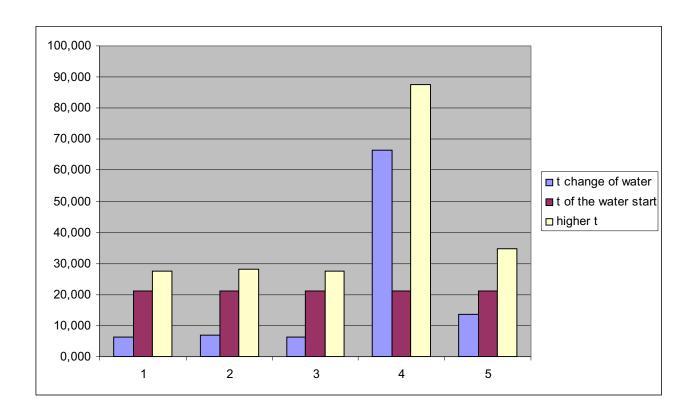
| 1ml H2O=1cm3=1gH2O                | butter bean (1) | bean-<br>caper (2) | brown bean (3) | almond (4) | grain (5) |
|-----------------------------------|-----------------|--------------------|----------------|------------|-----------|
| t change of water                 | 11,5            | 6,5                | 3,5            | 64,5       | 5,5       |
| heaat produced by whole nute      | 0,966           | 0,546              | 0,294          | 5,418      | 0,462     |
| heaat produced by 1gram of peanut | 2,047           | 3,050              | 0,433          | 4,679      | 0,658     |

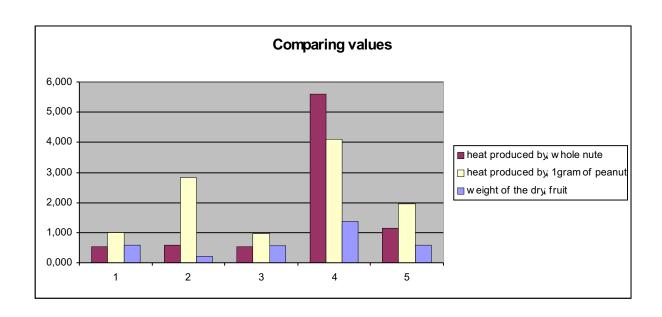
#### Group 3

|                                   |                 | bean-caper |                | almond |           |
|-----------------------------------|-----------------|------------|----------------|--------|-----------|
| 1ml H2O=1cm3=1gH2O                | butter bean (1) | (2)        | brown bean (3) | (4)    | grain (5) |
| t change of water                 | 4               | 9          | 6              | 56     | 13        |
| heaat produced by whole nute      | 0,336           | 0,756      | 0,504          | 4,704  | 1,092     |
| heaat produced by 1gram of peanut | 0,603           | 2,671      | 0,903          | 3,751  | 1,936     |

#### Group 4

| 1ml H2O=1cm3=1gH2O                        | butter bean | bean-<br>caper | brown bean | almond | grain |
|-------------------------------------------|-------------|----------------|------------|--------|-------|
| t change of water                         | 6,5         | 8,5            | 12,5       | 75     | 19    |
| heat produced by whole dried fruit (kj)   | 0,546       | 0,714          | 1,05       | 6,3    | 1,596 |
| heat produced by 1gram of the dried fruit | 1,030       | 3,967          | 1,981      | 4,200  | 2,800 |


#### Group 5


| 1ml H2O=1cm3=1gH2O                | butter bean | bean-caper | brown bean | almond | grain |
|-----------------------------------|-------------|------------|------------|--------|-------|
| t change of water                 | 4,5         | 5          | 7,5        | 73,5   | 12,5  |
| heaat produced by whole nute      | 0,378       | 0,42       | 0,63       | 6,174  | 1,05  |
| heaat produced by 1gram of peanut | 0,454       | 1,918      | 0,962      | 3,900  | 1,875 |

Therefore, for having a better comprehension I'll find the average number amongst this three values, and will compare the energy released amongst the dry fruits.

The formula used will be  $\frac{x+y+z...}{5}$  where the variables are the different values in the tables and five are the number of groups that we have.

| averages                         | butter bean (1) | bean-caper<br>(2) | brown bean (3) | almond<br>(4) | grain (5) |
|----------------------------------|-----------------|-------------------|----------------|---------------|-----------|
| t of the water start             | 21,100          | 21,100            | 21,100         | 21,100        | 21,100    |
| higher t                         | 27,400          | 28,100            | 27,500         | 87,700        | 34,700    |
| weigh of the semente             | 0,583           | 0,211             | 0,574          | 1,367         | 0,601     |
| t change of water                | 6,300           | 7,000             | 6,400          | 66,600        | 13,600    |
| heat produced by whole nute      | 0,529           | 0,588             | 0,538          | 5,594         | 1,142     |
| heat produced by 1gram of peanut | 0,987           | 2,836             | 0,950          | 4,109         | 1,949     |





#### **EVALUATION**

So, in conclusion, the dry fruit that gave more energy was the almond; the second was the bean caper, and in the third position is the grain and in the fourth are the brown bean and the butter bean. As we have 1 gram for each seed than from here we can take that one of the factors for the better combustion is the chemical composition of the body itself probably from the hydro carbonates. In terms of T° we can find an error as the % of humidity might not be in the needed conditions and so the n°s fluctuates.

From this summarisation we conclude that the hydro carbonates and the humidity are relevant when speaking in energy, as a body with more Hydro carbonates might release more energy than a lesser one unless the humidity is changed.

This value can be seen in the first graphic, in which I de monstrate that the To changes were reasonable to consider it an error.

There could be another thing that is the fact of the brown bean combusted better than the butter bean but this values are not relevant as the change among the seeds is from 0,1.

I don't know why but when I searched on the USDA (org responsible for the caloric valorisation in USA) our results were completely wrong. Perhaps 6 times plus.

|                     |                 | bean-caper |                | almond  |           |       |
|---------------------|-----------------|------------|----------------|---------|-----------|-------|
|                     | butter bean (1) | (2)        | brown bean (3) | (4)     | grain (5) |       |
| Cal por 100g        | 23,502          | 67,512     | 22,614         | 97,834  | 46,400    |       |
| Cal por 100g (USDA) | 320,000         | 360,000    | 320,000        | 578,000 | 310,000   | aprox |
| mines               | 13,616          | 5,332      | 14,150         | 5,908   | 6,681     |       |

I believe that for a better experience, next time the variables should be better controlled, especially the humidity as it determines how the combustion is processed.

The experience actually met my expectations.

## **BIBLIOGRAPHY**

- http://www.nal.usda.gov/fnic/foodcomp/cgi -bin/list\_nut\_edit.pl
- \_