Physics Practical Investigation Coursework
Investigating Simple Harmonic Oscillations

This investigation aims to explore the nature of different oscillating systems, including
the factors upon which the oscillation depends and the energy transfer involved .

Preliminary Experiment

A pendulum was made using a bob hanging, by a piece of string, from a standing
clamp. Experiments were carried out, recording the time taken for ten complete
cycles from angles of displacement ranging from 5 to 30° in 5° interva Is. In separate
experiments, the mass and string length were changed as the independent variables
in order to investigate the effect they had upon the period of oscillation. The mass of
the bobs used were 100, 200 and 300g; the length of the string varyin g between
15cm and 30cm. For each experiment, three trials were completed in order to allow
identification of anomalous results and enable the calculation of an average time —
this value was then divided by ten in order to work out the average time of one
oscillation.

Average time for 1 oscillation

Length of string: 0.15m (s)
Amplitude: Angle of initial displacement
(degrees) 100g 200g 300g
5 1.08 1.08 1.09
10 1.08 1.09 1.09
15 1.09 1.09 1.09
20 1.08 1.09 1.08
25 1.09 1.10 1.09
30 1.09 1.10 1.09
Average time for 1 oscillation
Length of string: 0.3m (s)
Amplitude: Angle of initial displacement
(degrees) 100g 200g 300g
5 1.31 1.32 1.31
10 1.32 1.33 1.32
15 1.32 1.33 1.32
20 1.32 1.33 1.33
25 1.33 1.33 1.33
30 1.33 1.34 1.33

For complete table of data, see appendix.

It can be observed that the period of oscillation is independent of both mass and
initial displacement, but does depend on length.

According to the equation:

T=2;?TJE
g

The time period for an oscillation in a pendulum of length 30cm should be:
21\ (0.3/9.81) = 1.098767 =1.10

and for 15cm
21~ (0.15/9.81) = 0.776946 = 0.78




Taking the observed period to be 1.33 with length 30cm, and the observed period
with length 15cm to be 1.09 there is a difference between observed and expected
results of 0.23 and 0.31 respectively. The pendulum exhibits simple harmonic motion,
the energy being transferred between potential (at the extremes of the oscillation)
and kinetic energy. However, resistive forces from friction between the string and the
clamp and also the between the bob and the air, cause an exponential decrease in
energy in the system. This results in a loss in amplitude and also increases the time
for each oscillation. As is true for all systems showing simple harmonic motion, i t
could be observed that the acceleration of the mass is greatest as it beg an to move
back towards its equilibrium position from the statio nary extremes of the oscillation,
the velocity being greatest as the equilibrium position was passed.

Oscillation in a driven system

The loss of energy through friction (not measured in the preliminary experiment ),
which was independent of mass, led to the investigation of a nother system for which
the energy losses would be compensated by the input of additional energy.

A spring with an attached mass was connected to a vibration generator, causing it to
oscillate at frequencies selected using the signal generator. At a certain frequency,
the driving force adds energy at just the righ t moment during the cycle so that the
oscillation is reinforced and the spring oscillates with maximum amplitude. This is the
resonant frequency - the natural frequency of the system.

Masses ranging from 100g to 400g at 50g intervals were attached to the spring and
both the resonant frequency and amplitude were recorded. The amplitude was
measured by subtracting the increase in extension whi Ist at maximum amplitude, (at
resonant frequency) from initial spring extension without any oscillation (using the
ruler). Each experiment using a different mass was com pleted three times as the
actual point of resonant frequency was a little subjective. Again, this allowed the
identification of anomalous data and the calculation of average values .

Safety: A plastic cylinder surrounded the mass and spring to stop the spr ing swinging
violently and the mass becoming detached. Mains electricity was used safely through
a signal generator.
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Average
Average Amplitude of
Mass Resonant Resonant
(kg) Frequency (Hz) | Frequency (Hz)
0.10 2.57 5.33
0.15 2.38 9.17
0.20 2.12 10.27
0.25 2.00 10.63
0.30 1.90 11.12
0.35 1.80 11.23
0.40 1.70 11.32
Full table of results in appendix.
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Like the preliminary experiment it was observed that the acceleration of the mass
was greatest as it began to move back towards equilibrium and the velocity is
greatest as it passes this point. Unlike the preliminary experiment, the frequency
does depend upon mass. The graph shows negative correlation between mass and
resonant frequency - as the mass was increased, the resonant frequency decreased.



This can be seen in the following equation:
T= 21 (m/k)

Therefore, as k and 21 are constants:

T o< Vm

(1/f) o \m

As frequency increases the value of 1/f becomes smaller, which as it is proportional
to the square root of m, means that m also decreases.

The results obtained experimentally indicate a slightly more linear relationship than
expected which is likely to be caused by measurement error.

Calculation of error:
With the mass values and spring constant a value for frequency can be calculated
using the equation:

Calculated
1 . M Measured Value for
T=—= zﬂ'v L Undamped Frequency
f ] Average Using
Mass Resonant Equation
(kg) Frequency (Hz) (Hz) Difference
0.10 2.57 2.40 0.17
0.15 2.38 1.96 0.42
0.20 212 1.70 0.42
0.25 2.00 1.52 0.48
0.30 1.90 1.38 0.52
0.35 1.80 1.28 0.52
0.40 1.70 1.20 0.50

A graph to show the difference between measured and
calculated values of frequency
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The previous graph shows the discrepancies between observed and expected
values, with a difference of around 0.5 Hz. A difference of this nature possibly
indicates that the signal generator was producing frequencies approximately 0.5Hz
higher than measured.
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The graph shows that the amplitude at the resonant frequency increases with mass.
This is because there is more energy in the oscillating system with greater mass
resulting in larger displacement . The amplitude seems to plateau, possibly because
increasing amounts of energy are required to extend the spring when stretching it
further— in accordance with the square relationship E=1/2 kx 2.

A source of error in this experiment is due to th e sometimes subjective nature to
recognising the point when the system was actually at its resonant frequency.
However, the frequency generator was not particularly sensitive and the pointer was
a little unreliable, so error bars on the first graph are small. The errors are larger for
the amplitude measurements - simply because the system had so much energy that
the maximum vertical displacement was difficult to measure before it started
swinging.



Damped Oscillations

The above experiment was repeated with a constant volume of water in the plastic
cylinder, covering the mass, acting as a damping force. As above, both the maximum
amplitude and resonant frequency were recorded in three trials and the average
calculated, removing any anomalous results.

Safety: Wires were kept away from water at all times.

Damped
Damped Average
Average Amplitude of
Mass Resonant Resonant
(kg) Frequency (Hz) | Frequency (Hz)
0.10 2.00 1.53
0.15 1.80 1.83
0.20 1.65 2.00
0.25 1.45 2.33
0.30 1.39 3.15
0.35 1.31 3.57
0.40 1.23 4.07

See appendix for full table of data, including anomalous results.



Resonant Frequency

A Line Graph to show the relationship between Mass
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Exactly the same relationships are true as in the undamped system , the values are
just lower. The damping effect of water is due to the removal of energy from the
system and is caused by friction between the mass and damping fluid. Kinetic energy
is lost as heat to the water.

The error range of amplitude is however larger due to additional difficulty in
recognising the point of resonant frequency, caused by the large damping effect. Itis
presumed that a similar error in measured frequency values, as in the undamped
experiment, is also present in this experiment.

The amplitude showed a more linear increase. This is probably because the spring
extension between different mass values was that much smaller due to damping. If
the energy of the system is proportional to the amplitude 2, a system with decreased
energy causes amplitude to be reduced considerably (as a consequence of the
square relationship).



A source of error could be that the surface area of the hangi ng mass does not remain
constant — meaning there could be additional friction between mass and fluid with
larger masses and consequentially a greater loss of energy.

The effect of the damping can be seen more easily by comparison between the two
experiments.
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As can be seen in the graph, the resonant frequency is consistently lower in the
damped system than in the undamped system.

Mass

(kg)
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Undamped
Average
Resonant
Frequency
(Hz)
2.57
2.38
212
2.00
1.90
1.80
1.70

Damped

Average

Resonant Difference

Frequency(Hz) (Hz)
2.00 0.57
1.80 0.58
1.65 0.47
1.45 0.55
1.39 0.51
1.31 0.49
1.23 0.47

%

Difference
22.08
24.48
22.05
27.50
26.67
27.41
27.45

The damping effect reduces the resultant frequency by an average o f 0.52Hz. The
percentage decrease in resonant frequency increases slightly with mass — possibly

due a greater surface area of larger masses as discussed above.
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To calculate an approximate percentage change, where the lines of best fit are
almost equal in gradient (0.4 and 0.44), the first point was removed . The intercepts
differ by 7.92 meaning that, over this range of values, the amplitude is reduced by
approximately 8cm by the damping effect of the water. As a percentage change this
is:  (8/8.81) x 100 = 91%.

The reason that, in reality, the difference is not linear (especially in the undamped)
system is the square relationship between amplitude and energy (E=1/2 kx 2).

The energy of the system is equal to the sum of the kinetic energy and potential
energy at any point. The easiest way of calculating the total energy is when the
kinetic energy is zero and all the energy is stored as potential energy in the stretched
spring. This allows the use of the previously mentioned equation:

E=1/2 kx? (x being the amplitude of oscillation)



Calculation of Spring Constant:

Mass (kg) Weight (N) Extension (m)
0.10 0.98 0.03 32.67
0.20 1.96 0.09 21.78
0.30 2.94 0.13 22.62
0.40 3.92 0.17 23.06
0.50 4.90 0.21 23.33

Taking the first value of k to be anomalous, the average spring constant is 22.70
which will be used in following equations to calculate the energy.

Energy Energy
in Undamped in Damped
Mass (kg) System (J) System (J)
0.10 322.44 26.69
0.15 953.72 38.01
0.20 1196.34 45.40
0.25 1283.32 61.79
0.30 1402.64 112.62
0.35 1432.23 144.38
0.40 1453.56 187.70




A line graph to show the difference in energy betwen the
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The graph shows, as expected, that syistem energyi increases with mass whether it is
damped or not, but the increase is much larger in the undamped system. The
damped syistem has lower energy due to the fluid density providing a buoyancyi force
acting upwards against the weight of the masses — causing a smaller downwards
resultant force and meaning a large amount of energy is lost as heat to the water
through friction. As mentioned before, an uncontrolled variable in mass surface area
could add to this effect, the larger the mass, the greater the surface area for loss of
energy through friction.

It was planned to further the investigation with a more viscous damping fluid, but the
large effect of water damping (water being a particularly non -viscous liquid) caused
the belief that the syistem would then be damped to a critic al point, or possibly over-
damped. This would result in near impossible measurements of frequency; as the
frequencies were already; veny low with water.

The spring constant, k, could be changed and would affect the energy and therefore
the whole oscillation of the system. Increasing k would mean a larger amount of
energyi could be stored in the spring — increasing displacement and frequency and
decreasing the period, in accordance with the equation:

T= 21 V(m/k)



Changing the diameter of the cylinder containi ng a constant volume of water may
also have an effect upon how easy it is for the water to be displaced sideways by the
masses — increasing the diameter could potentially make the displacement easier,
losing less energy and having less damping effect.

If this experiment was to be repeated | would ensure that the mass was of constant

surface area. The effect of damping with different shaped masses, or those with
different surface areas could also be investigated further.

Summary/Conclusion

In a system for which frequency is dependent upon mass, increasing the mass
decreases the frequency. The amplitude is increased as the weight force acting
upon the spring is larger and the system has more energy.

In both an undriven and damped system showing simple harmonic motion, energy is
lost as heat through friction between moving parts and the fluid surroundings —
whether it be air or water. The damping effect in water is great as it is much denser
than air. This means there are more particles in a constant volu me which cause
frictional resistance against a moving mass, causing the system to lose energy as
heat to the fluid. The loss of energy is apparent in the loss of amplitude, or spring
extension.

Despite having relatively small error bars on graphs, the rel iability of the results is
questionable, mainly due to dubious frequency values measured experimentally .
However the majority of the relationships and trends can still be seen. More accurate
frequency values would have allowed a more accurate calculation of damping effect
on resonant frequency.






Preliminary Data

Appendix

Length 30cm

Time taken for 10 oscillations

Average time for 1

Mass 100g Angle of initial displacement (degrees) Trial 1 Trial 2 Trial 3 Average | oscillation
5 13.15 13.14 13.13 13.14 1.31
10 13.18 13.18 13.14 13.17 1.32
15 13.22 13.27 13.23 13.24 1.32
20 13.18 13.26 13.23 13.22 1.32
25 13.27 13.27 13.27 13.27 1.33
30 13.32 13.32 13.37 13.34 1.33
Length 30cm Time taken for 10 oscillations
Average time for 1
Mass 200g Angle of initial displacement (degrees) Trial 1 Trial 2 Trial 3 Average | oscillation
5 13.16 13.18 13.20 13.18 1.32
10 13.26 13.30 13.24 13.27 1.33
15 13.27 13.30 13.26 13.28 1.33
20 13.33 13.27 13.30 13.30 1.33
25 13.32 13.32 13.36 13.33 1.33
30 13.32 13.41 13.41 13.38 1.34
Length 30cm Time taken for 10 oscillations
Average time for 1
Mass 300g Angle of initial displacement (degrees) Trial 1 Trial 2 Trial 3 Average | oscillation
5 13.11 13.12 13.15 13.13 1.31
10 13.20 13.27 13.26 13.24 1.32
15 13.14 13.15 13.18 13.16 1.32
20 13.23 13.36 13.32 13.30 1.33
25 13.27 13.30 13.34 13.30 1.33
30 13.30 13.40 13.28 13.33 1.33

Length 15cm

Time taken for 10 oscillations




Average time for 1

Mass 100g Angle of initial displacement (degrees) Trial 1 Trial 2 Trial 3 Average | oscillation
5 10.71 10.80 10.82 10.78 1.08
10 10.82 10.80 10.92 10.85 1.08
15 10.86 10.87 10.86 10.86 1.09
20 10.83 10.82 10.87 10.84 1.08
25 10.88 10.90 10.90 10.89 1.09
30 10.87 11.00 10.93 10.93 1.09
Length 15cm Time taken for 10 oscillations
Average time for 1
Mass 200g Angle of initial displacement (degrees) Trial 1 Trial 2 Trial 3 Average | oscillation
5 10.74 10.84 10.89 10.82 1.08
10 10.90 10.93 10.95 10.93 1.09
15 10.89 10.84 10.90 10.88 1.09
20 10.84 10.93 11.01 10.93 1.09
25 10.98 11.00 10.93 10.97 1.10
30 11.02 11.02 11.02 11.02 1.10
Length 15cm Time taken for 10 oscillations
Average time for 1
Mass 300g Angle of initial displacement (degrees) Trial 1 Trial 2 Trial 3 Average | oscillation
5 10.76 10.80 11.01 10.86 1.09
10 10.84 10.79 10.92 10.85 1.09
15 10.82 10.90 10.86 10.86 1.09
20 10.80 10.89 10.85 10.85 1.08
25 10.84 10.90 11.01 10.92 1.09
30 10.89 11.00 10.90 10.93 1.09




Data from Experiment 2&3

Trial 1 Trial 2 Trial 3
Average
Amplitude of Amplitude of Amplitude of Average Amplitude of
Resonant Resonant Resonant Resonant Resonant Resonant Resonant Resonant
Undamped | Mass (kg) | Frequency | Frequency Frequency Frequency Frequency Frequency Frequency Frequency
0.10 2.60 5.00 2.60 5.50 2.50 5.50 2.57 5.33
0.15 2.40 9.50 2.40 9.00 2.35 9.00 2.38 9.17
0.20 2.10 10.00 2.15 10.20 210 10.60 212 10.27
0.25 2.00 10.20 2.00 10.50 2.00 11.20 2.00 10.63
0.30 1.90 10.90 1.90 11.20 1.90 11.25 1.90 11.12
0.35 1.80 11.00 1.80 11.40 1.80 11.30 1.80 11.23
0.40 1.70 11.20 1.70 11.30 1.70 11.45 1.70 11.32
Trial 1 Trial 2 Trial 3
Average
Amplitude of Amplitude of Amplitude of Average Amplitude of
Mass Resonant Resonant Resonant Resonant Resonant Resonant Resonant Resonant
Damped (kg) Frequency | Frequency Frequency Frequency Frequency Frequency Frequency Frequency
0.10 2.00 1.50 2.00 1.50 2.00 1.60 2.00 1.53
0.15 1.80 2.20 1.80 1.60 1.80 1.70 1.80 1.83
0.20 1.70 3.00 1.60 2.00 1.65 2.00 1.65 2.00
0.25 1.45 2.30 1.45 2.60 1.45 210 1.45 2.33
0.30 1.40 3.00 1.40 3.30 1.38 3.70 1.39 3.15
0.35 1.32 3.60 1.30 3.60 1.30 3.50 1.31 3.57
0.40 1.25 4.00 1.20 4.20 1.25 4.00 1.23 4.07

Anomalous results (in red) are not included in averages.




