Capacitance

Introduction

Chapter 3, “Capacitance,” contains laboratory experiments designed to explore the relationship between
voltage and the amount of charge stored in an object. These experiments involve measuring electrical
properties of capacitors in series, in parallel, while charging, discharging, and at varying widths between
the surfaces. Hands-on experience and resulting data should provide insight into the nature of
capacitance.

Theory

In order to charge an object, a certain amount of energy is required to transfer charge to that object. The
energy per unit of charge is called voltage. Given a certain voltage, charge can be transferred to an
object until the amount of energy that is required to add more charge exceeds the energy potential. A
derived unit is useful for expressing the capacity of charge (in Coulombs) that can be transferred to an
object per unit of voltage (in Volts). Therefore, a unit of capacitance called the Farad exists, and is
defined as C = Q/V.

A capacitor comprised of two parallel surfaces will have a capacitance equal to

8.85 pF/m, times the area of one of the plates, divided by the distance between them. When sharing the
charge applied to one capacitor with a second capacitor, charge is conserved, therefore Vf * (C1 + C2) =
Vi* C1. When discharging a capacitor through a resistor, V(t) = VO * e-t/RC. When charging a capacitor
through a resistor, V(t) = Vf — Vf* e-t/RC.

Experiments

3.5.2: Charging a Capacitor

This experiment required a 9V battery, a voltmeter, and voltage a follower that were assembled in this
way: The battery and voltage follower ground contacts were connected to the volt meter ground, while
the voltage follower output was connected to the positive terminal of the volt meter. To measure the
voltage across the 0.033 pF capacitor, | connected one end of the capacitor to the positive lead from the
voltage follower, and connected the other end to the ground.

To charge the capacitor, | touched the positive probe from the 9V battery to the ungrounded side of the
capacitor. The voltmeter displayed 8.90 V after removing the battery probe. Therefore, the charge on the
capacitor was 0.033 yF * 8.90V =0.294 uC.

3.6.1: Measuring Unknown Capacitance

This experiment was the same as the previous one, except that after the capacitor was charged, a
second one was connected to it in parallel. When | connected the second capacitor, the measured
voltage dropped to 6.87 V. So, theoretically, the capacitance of the second capacitor was C2 = C1Vi/Vf
—C1=0.033 yF *8.90 V/6.87 V — 0.033 puF = 0.00975 yF. The second capacitor was actually rated at
0.01 pF, and the voltmeter was precise enough to measure the drop in voltage accurately within
(0.00975 —0.01) / 0.01 = -2.49%. The multi-meter or irregularities of the capacitors themselves could
have caused such small error.

| repeated the experiment using one capacitor of unknown rating, and one of 0.033 pF. The voltage
dropped this time to 8.24 V, which was unsatisfactory. Repeating again with a 0.0033 pF capacitor, the
voltage read 5.43 V. This greater change in V indicated that the capacitances were of the same order of
magnitude, allowing for greater accuracy in the following calculations. C1 = 0.0033 pF and Vf=5.43 V.
So, C2 =0.0033 yF *8.90 V/5.43V - 0.0033 pF =0.00211 pF.

3.6.2: Variable-Gap Capacitor

This experiment measured the capacitance between two parallel plates that were connected directly to a
capacitance meter. The distance between the plates was increased at prescribed intervals, and |
recorded the capacitance for each interval. (See page 10 for these data.)

Data from the variable width capacitor experiment were graphed on log-log scales. The resulting scatter
plot was very linear in shape. (See page 7.) To find the slope of this line, | divided the difference
between the capacitance and distance coordinates after taking the log of each. | selected two points that
fell exactly on the trend line, and used those points to find an equation for the line.

Point One = (log[2.4], log[13]) = (0.380, 1.114)

Point Two = (log[0.3], log[101]) = (-0.523, 2.004)

Slope =m =[(1.114 —2.004) / (0.380 + 0.523)] = -0.9859



Using the general form of a line where the axes are labelled ‘X and ‘y’, ‘m’ is the slope, and ‘b’ is a
constant equal to the y-intercept:

y=(m)x) +b
log C =(m)(logd)+b
log C = (-0.9859)(log d) +b

Substituting the coordinates of Point Two where ‘C’ is the capacitance and ‘d’ is the distance between
the plates:

2.004 = (-0.9859)(-0.523) + b

b =1.4888

So, an equation for the trend line is:

log C = (-0.9859)(log d) + 1.4888

To compare this result with the current capacitance theory, | had to manipulate equation 3.2 so that it
was in the form of y = mx + b.

C =ke0OA/d

‘K’ is equal to one, ‘€0’ equals 8.85 pF/m, and ‘A’ is the surface area of one of the capacitor’s disks. For
consistency with lab measurements, | converted all of the lengths to centimetres and all of the
capacitances to picofarads. So, using €0 = 8.85 * 10-2 pF/cm, and r = 10 cm;

C = ¢0A/d

log C =log(e0A) — log(d)

log C =10g(8.85 * 10-2 * 102 * 1) — log(d)

log C = (-1.0000)(log d) + 1.4441

Finally, this equation is comparable to my own, and illustrates a small margin of error.



