Time Series Analysis and Forecasting Coursework
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Plot 1. Time series plot of IBM price
The time series plot shows an increasing trend, no seasonal or cyclical components.

Autocorrelation Function for ibmprice
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Lag Corr T LBQ Lag Corr T LBQ Lag Corr T LBQ Lag Corr T LBQ
1 0.98 11.38 132.40 10 0.77 2.311095.68 19 0.60 1.431737.66 28 0.39 0.852099.08
2 0.95 6.49 259.02 11 0.75 2.17 1180.63 20 0.58 1.361792.28 29 0.37 0.792122.63
3 0.93 4.97 380.56 12 0.74 2.04 1262.00 21 0.56 1.301843.56 30 0.34 0.732143.32
4 0.91 4.16 497.77 13 0.72 1.931339.90 22 0.54 1.221890.89 31 0.32 0.682161.57
5 0.89 3.62 610.06 14 0.70 1.831414.62 23 0.51 1.151934.23 32 0.30 0.632177.47
6 0.86 3.22 716.72 15 0.68 1.74 1486.26 24 049 1.091973.72 33 0.27 0.582191.16
7 0.84 290 817.86 16 0.66 1.66 1554.26 25 0.46 1.022009.80
8 0.81 266 914.33 17 0.64 1.581618.91 26 0.44 0.97 2042.68
9 0.79 2.471006.93 18 0.62 1.501679.93 27 0.42 0.912072.50



The autocorrelation function (acf) has high auto correlations that decrease slowly- giving
the shape of a ‘thick wedge'- this pattern is indicative of a trend. We cannot use our models
because of the presence of the trend; this must be removed by differencing the series with
a lag of 1.
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Plot 2. Time series plot of differenced IBM prices
Autocorrelation Function for Diff-ibm
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Lag Corr T LBQ Lag Corr T LBQ Lag Corr T LBQ Lag Corr T LBQ

0.21 243 6.04 10 0.01 0.10 14.07 19 -0.04 -0.38 21.30 28 0.08 0.76 30.33
-0.12 -1.28 7.88 11 0.07 0.77 14.86 20 0.06 0.56 21.80 29 -0.01 -0.08 30.34
-0.08 -0.90 8.81 12 -0.05 -0.58 15.31 21 -0.01 -0.09 21.81 30 -0.11 -1.06 32.42
0.11 123 10.58 13 -0.15 -1.59 18.77 22 -0.07 -0.67 22.52 31 0.01 0.11 3244
0.06 0.63 11.06 14 0.01 0.09 18.78 23 -0.13 -1.29 25.21 32 -0.03 -0.31 32.62
-0.04 -043 11.29 15 0.09 0.88 19.90 24 -0.09 -0.89 26.52 33 -0.05 -0.48 33.08
-0.05 -0.52 11.63 16 0.04 0.36 20.10 25 0.03 0.34 26.71
-0.03 -0.32 11.76 17 -0.06 -0.62 20.68 26 0.09 0.85 27.95
-0.13 -1.34 14.06 18 -0.05 -0.52 21.08 27 0.09 0.87 29.28
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The plot and acf now show no pattern in the differenced series, we now have a stationary

series on which fo use our models.

The first autocorrelation is significantly different from zero (T=2.43>2) and all the other
autocorrelations lie within the confidence limits so this suggests that MA (1) model can be
used for the differenced series.

Partial Autocorrelation Function for Diff-ibm
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Lag PAC T Lag PAC T Lag PAC T Lag PAC T
1 021 2.43 10 0.08 0.88 19 -0.05 -0.58 28 0.08 0.89
2 -0.17 -1.93 11 0.03 0.37 20 0.08 0.88 29 -0.02 -0.20
3 -0.02 -0.23 12 -0.10 -1.14 21 -0.07 -0.78 30 -0.14 -1.67
4 013 1.47 13 -0.07 -0.87 22 -0.07 -0.85 31 0.02 0.20
5 -0.01 -0.17 14 0.06 0.73 23 -0.07 -0.77 32 -012 -1.36
6 -0.03 -0.31 15 0.00 0.04 24 -0.06 -0.75 33 -0.03 -0.29
7 -0.01 -0.12 16 0.01 0.09 25 0.02 0.19
8 -0.04 -0.46 17 -0.02 -0.21 26 0.05 0.55
9 -0.14 -1.62 18 -0.05 -0.54 27 0.10 1.14

Only the first partial autocorrelation (pac) is significantly different from zero (T=2.43>2)
suggesting the use of an AR (1) model. However, the second pac is close to being significant

with a T value of -1.93. This suggests it might be worth considering an AR (2) model.
Overall conclusion
It would be best to go for MA (1) as there is no confusion like in the AR model.

Now we will look at the ARIMA command to identify the most suitable model to apply to the

time series.
ARIMA Model: Diff-ibm (MA (1) model with constant)

ARIMA model for Diff-ibm

Final Estimates of Parameters

Type Coef SE Coef T P
MA 1 -0.2685 0.0851 -3.16 0.002
Constant 0.9140 0.5501 1.66 0.099
Mean 0.9140 0.5501

Number of observations: 134
Residuals: SS = 3327.03 (backforecasts excluded)
MS = 25.20 DF = 132

Modified Box-Pierce (Ljung-Box) Chi-Square statistic
Lag 12 24 36 48
Chi-Square 8.9 17.6 24.8 32.5



DF 10 22 34 46
P-Value 0.540 0.727 0.875 0.933

Firstly we examine the parameter estimates to see if they are significantly different from
zero. If P>0.05, the parameter is not significantly different from zero and may therefore
be excluded from the model.

Examining the MA (1) model we see that the constant term is not significantly different
from zero (T=1.66, p=0.099>0.05). We can therefore remove the constant term.

ARIMA Model: Diff-ibm (MA (1) model without constant)

ARIMA model for Diff-ibm

Final Estimates of Parameters
Type Coef SE Coef T P
MA 1 -0.2853 0.0842 -3.39 0.001

Number of observations: 134
Residuals: SS = 3395.98 (backforecasts excluded)
MS = 25.53 DF = 133

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48
Chi-Square 8.9 17.4 24.6 32.5
DF 11 23 35 47
P-Value 0.634 0.787 0.905 0.946

Examining the MA (1) model without a constant, we see that the parameter is significantly
different from zero (T=-3.39, p=0.001). The Box-Pierce statistic is not significant (chi-
square (x°)=17.4, p=0.787>0.05).

So the model provides an adequate fit. Now we see what happens when a second MA term is
added.

ARIMA Model: Diff-ibm (MA(2) without constant)

ARIMA model for Diff-ibm

Final Estimates of Parameters

Type Coef SE Coef T P
MA 1 -0.2691 0.0875 -3.07 0.003
MA 2 0.0325 0.0885 0.37 0.714

Number of observations: 134
Residuals: SS = 3392.54 (backforecasts excluded)
MS = 25.70 DF = 132

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48
Chi-Square 8.1 16.6 23.8 31.9
DF 10 22 34 46
P-Value 0.618 0.784 0.904 0.943

The second MA parameter is not significantly different from zero (T=0.37, p=0.714>0.05)
and so the parameter is not required in the model. We see that the Box-Pierce statistic
remains fairly similar at 16.6 so there is no improvement in fit obtained by using an MA(2)
model.



Conclusion
We will therefore use an MA(1) mode/ without a constant. This conclusion is consistent with
that reached by /ooking at the acf.

Now we will look at the AR model:
ARIMA Model: Diff-ibm (AR (1) model with constant)

ARIMA model for Diff-ibm

Final Estimates of Parameters

Type Coef SE Coef T P
AR 1 0.2124 0.0854 2.49 0.014
Constant 0.7207 0.4369 1.65 0.101
Mean 0.9151 0.5547

Number of observations: 134
Residuals: SS = 3376.16 (backforecasts excluded)
MS = 25.58 DF = 132

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48
Chi-Square 11.9 21.7 29.0 35.7
DF 10 22 34 46
P-Value 0.291 0.477 0.712 0.864

Examining the AR (1) model we see that the constant ferm is not significantly different
from zero (T=1.65, p=0.101>0.05). We can therefore remove the constant term.

ARIMA Model: Diff-ibm (AR(1) without constant)

ARIMA model for Diff-ibm

Final Estimates of Parameters
Type Coef SE Coef T P
AR 1 0.2388 0.0844 2.83 0.005

Number of observations: 134
Residuals: SS = 3443.69 (backforecasts excluded)
MS = 25.89 DF = 133

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48
Chi-Square 12.1 21.8 29.0 35.8
DF 11 23 35 47
P-Value 0.355 0.533 0.752 0.882

Examining the AR (1) model without a constant, we see that the parameter is significantly
different from zero (T=2.83, p=0.005). The Box-Pierce statistic is not significant (x*=21.8,
p=0.533>0.05)

So the model provides an adequate fit. Now we see what happens when a second AR term is
added.



ARIMA Model: Diff-ibm (AR(2) without constant)

ARIMA model for Diff-ibm

Final Estimates of Parameters

Type Coef SE Coef T P
AR 1 0.2769 0.0866 3.20 0.002
AR 2 -0.1543 0.0881 -1.75 0.082

Number of observations: 134
Residuals: SS = 3366.41 (backforecasts excluded)
MS = 25.50 DF = 132

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48
Chi-Square 6.3 13.8 21.0 29.8
DF 10 22 34 46
P-Value 0.787 0.909 0.960 0.969

The second AR parameter is not significantly different from zero (T=-1.75, p=0.082>0.05)
although this is close. In addition the Box-Pierce statistic shows that ¥* has dropped to 13.8
(p=0.909) suggesting an improved fit. We could therefore consider the AR(2) model. This
result is consistent to that reached with the pacf.

Now we see what happens when a third AR term is added.

ARIMA Model: Diff-ibm (AR(3) without constant)

ARIMA model for Diff-ibm

Final Estimates of Parameters

Type Coef SE Coef T P
AR 1 0.2785 0.0880 3.17 0.002
AR 2 -0.1576 0.0922 -1.71 0.090
AR 3 0.0112 0.0895 0.13 0.900

Number of observations: 134
Residuals: SS = 3366.05 (backforecasts excluded)
MS = 25.70 DF = 131

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48
Chi-Square 6.3 13.8 21.1 30.0
DF 9 21 33 45
P-Value 0.706 0.876 0.945 0.958

There is no point in adding 3™ term as the 3™ parameter is not significant and the x*value is

the same. Therefore we could use AR(1) or AR(2).
Overall conclusion

MA(1) model preferred on grounds of clarity and parsimony but we may want to consider
AR(2) as it gives a better fit. Overall go for MA(1) so the fit is not that much better.



ARIMA Model: Diff-ibm (MA (1) model without constant)

ARIMA model for Diff-ibm

Final Estimates of Parameters
Type Coef SE Coef T P
MA 1 -0.2853 0.0842 -3.39 0.001

Number of observations: 134
Residuals: SS = 3395.98 (backforecasts excluded)
MS = 25.53 DF = 133

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48
Chi-Square 8.9 17.4 24.6 32.5
DF 11 23 35 47
P-Value 0.634 0.787 0.905 0.946

Forecasts from period 135
95 Percent Limits

Period Forecast Lower Upper Actual
136 -1.9599 -11.8659 7.9462
137 0.0000 -10.3013 10.3013

We need to forecast X;3, and X;37.

Let Xt =IBM price on day t
Yt =Xt - Xt-1 (series of first differences)

From ARIMA command for MA(1) model without constant this model is estimated by
Yt =7t + 0.2853Zt-1

We need to forecast X3¢ and Xj37.

From forecasts above ¥;35 =-1.96 and ¥;3,=0

To complete the forecasting of next 2 observations we must connect the X’s and Y’’s.

Yt =Xt —Xt-1
Xt =Yt +Xt-1

Xiz6= Yize + Xiss
Xiz6= Y36 + Xiss (we know Y34 from forecast results and X35 from the data)
=-1.96 + 585
=583.04
Finally, Xi37= Y137 + X136  (we know Y;3; from forecast results and X;35 was just forecasted)

X;57=0 +583.04

= 583.04
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Plot 3. Time series plot of monthly ticket sales
The plot shows an increasing trend and peaks at regular intervals indicating a seasonal or
cyclical component in the data. Increase in variation.

Autocorrelation Function for monthly tick
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Lag Corr T LBQ Lag Corr T LBQ Lag Corr T LBQ Lag Corr T LBQ
1 0.9511.38 132.13 10 0.70 2.51 852.90 19 045 1.241394.93 28 0.35 0.881725.14
2 0.88 6.28 245.49 11 0.74 2.55 940.27 20 0.44 1.211427.54 29 0.31 0.791743.09
3 0.80 4.64 342.03 12 0.76 2.491032.31 21 046 1.241462.95 30 0.29 0.721758.16
4 0.75 3.80 426.51 13 0.71 2.241113.85 22 0.48 1.301503.06 31 0.27 0.671771.46
5 0.71 3.28 502.92 14 0.65 1.97 1181.41 23 0.52 1.381549.61 32 0.26 0.651784.20
6 0.68 292 573.07 15 0.58 1.731237.05 24 0.53 1.401599.22 33 0.27 0.681798.52
7 0.66 2.69 639.90 16 0.54 1.56 1284.21 25 0.49 1.281642.38 34 0.30 0.741815.52
8 0.65 253 705.77 17 0.50 1.421325.17 26 0.44 1.121676.54 35 0.33 0.801836.06
9 0.67 249 775.48 18 0.47 1.311361.37 27 0.39 0.981703.38 36 0.34 0.831858.19



Here we see the observations 12 months apart are correlated, this indicates a seasonal
component in the series. Because of the presence of the seasonal component we must
difference the series with a lag of 12 to remove the seasonal component.
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Plot 4. Time series plot of differenced ticket sales
Having removed the seasonal component the difference series still shows signs of the
presences of an increasing trend on the plot.

Autocorrelation Function for diffsales12
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0.75 858 75.24 10 0.06 0.31 234.16 19 -0.23 -1.25 261.44 28 -0.14 -0.73 282.59
0.65 5.11 132.21 11 0.02 0.10 234.21 20 -0.22 -1.14 268.85 29 -0.16 -0.80 286.74
0.50 3.38 167.16 12 -0.04 -0.24 234.49 21 -0.16 -0.82 272.80 30 -0.15 -0.76 290.64
0.41 251 189.99 13 -0.03 -0.19 234.67 22 -0.12 -0.61 275.00 31 -0.13 -0.68 293.74
0.35 2.09 207.52 14 -0.07 -0.41 235.51 23 -0.00 -0.00 275.01 32 -0.06 -0.32 294.44
0.28 1.62 218.79 15 -0.11 -0.58 237.23 24 -0.01 -0.07 275.04 33 -0.06 -0.32 295.15
0.22 121 225.41 16 -0.18 -0.96 241.95 25 -0.05 -0.28 275.54
0.18 0.97 229.78 17 -0.18 -0.97 246.91 26 -0.07 -0.35 276.31
0.16 0.91 233.68 18 -0.20 -1.05 252.82 27 -0.13 -0.67 279.16
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Also the acf of the differenced series exhibits a 'thick wedge' pattern, indicative of a
trend. Now we must remove the trend from the differenced series, by differencing that
series with a lag of 1.
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Plot 5. Time series plot of doubly differenced ticket sales

Autocorrelation Function for d1d12
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Lag Corr T LBQ
1 -0.31 -3.55 12.86
2 010 1.00 14.09
3 -0.10 -1.01 15.37
4 -0.10 -1.02 16.71
5 0.06 062 17.23
6 -0.00 -0.00 17.23
7 -0.06 -0.57 17.67
8 -0.06 -0.62 18.20
9 018 1.79 2262

Corr

-0.14
0.07
-0.13
0.09
0.00
0.07
-0.11
-0.00
0.04

T

-1.39
0.68
-1.30
0.84
0.02
0.62
-1.04
-0.00
0.42

LBQ

25.45
26.16
28.77
29.90
29.90
30.54
32.34
32.34
32.64

Lag

20
21
22
23
24
25
26
27

Corr

-0.11
-0.09
0.04
-0.16
0.26
0.05
-0.05
0.08
-0.10

T

-1.08
-0.85
0.39
-1.46
2.36
0.46
-0.45
0.71
-0.89

22

LBQ

34.66
35.97
36.25
40.20
50.91
51.36
51.79
52.89
54.63

32

Lag Corr T LBQ

28 0.00 0.01 54.63
29 0.00 0.00 54.63
30 -0.04 -0.34 54.90
31 -0.09 -0.81 56.41
32 0.12 1.00 58.77
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We see from the plot and acf of the final series that both the trend and seasonal
components have been removed. We now have a stationary series on which to use our
models.

The first autocorrelation is significantly different from zero (T=-3.55¢<-2) suggesting the
use of an MA (1) model. However, the 23rd acf is also significant. This suggests that an MA
model may not be suitable but we might get away with using a MA (1) model.

Partial Autocorrelation Function for d1d12
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Lag PAC T Lag PAC T Lag PAC T Lag PAC T
1-031 -355 10 -0.06 -0.67 19 -011 -1.30 28 -0.05 -0.63
2 -0.00 -0.01 11 -0.05 -0.60 20 -0.26 -2.94 29 -0.01 -0.14
3 -0.07 -0.86 12 -0.12 -1.32 21 001 008 30 -0.09 -1.03
4 017 191 13 0.06 0.69 22 -022 -2.57 31 -012  -1.40
5 -0.02 -0.17 14 0.00 0.05 23 008 097 32 -0.07 -0.78
6 002 021 15 0.04 0.42 24 012 134
7 -0.09 -1.01 16 -0.09 -0.99 25 0.04 046
8 -013 -1.53 17 -0.03 -0.32 26 003 034
9 016 179 18 0.02 0.22 27 -0.02 -0.23

Only the first partial autocorrelation (pac) is significantly different from zero (T=-3.55¢-2)
suggesting the use of an AR (1) model. However, the 20th and 22nd pac are also significant
with a T values of -2.94 and -2.57 respectively. This suggests that an AR model may not be

suitable.
Overall conclusion

It would be best to go for MA (1) as there is more confusion in the AR model.

Now we will look at the ARIMA command to identify the most suitable model to apply to the
time series.

ARIMA Model: d1d12 (MA(1) with constant)

ARIMA model for dldl2

Final Estimates of Parameters

Type Coef SE Coef T P
MA 1 0.3223 0.0840 3.84 0.000
Constant 0.1937 0.6991 0.28 0.782
Mean 0.1937 0.6991

11



Number of observations: 131
Residuals: SS = 17968.6 (backforecasts excluded)
MS = 139.3 DF = 129

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48
Chi-Square 11.9 38.7 46.1 62.2
DF 10 22 34 46
P-Value 0.289 0.015 0.080 0.056

Examining the MA (1) model we see that the constant term is not significantly different
from zero (T7=0.28, p=0.782>0.05). We can therefore remove the constant term.

ARIMA Model: d1d12 (MA(1) without constant)

ARIMA model for dldl2

Final Estimates of Parameters
Type Coef SE Coef T P
MA 1 0.3212 0.0837 3.84 0.000

Number of observations: 131
Residuals: SS = 17978.9 (backforecasts excluded)
MS = 138.3 DF = 130

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48
Chi-Square 12.0 38.6 46.1 62.1
DF 11 23 35 47
P-Value 0.367 0.022 0.099 0.069

Examining the MA (1) model without a constant, we see that the parameter is significantly

different from zero (T=3.84, p<0.0005). The Box-Pierce statistic is significant (x*=38.6,
p=0.022<0.05).

So the model provides an adequate fit. Now we see what happens when a second MA term is

added.
ARIMA Model: d1d12 (MA(2) without constant)

ARIMA model for dldl2
Unable to reduce sum of squares any further

Final Estimates of Parameters

Type Coef SE Coef T P
MA 1 0.3205 0.0882 3.63 0.000
MA 2 -0.0094 0.0895 -0.11 0.916

Number of observations: 131
Residuals: SS = 17977.7 (backforecasts excluded)
MS = 139.4 DF = 129

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48
Chi-Square 11.9 38.6 46.0 61.9
DF 10 22 34 46
P-Value 0.290 0.016 0.082 0.059
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The second MA parameter is not significantly different from zero (T=-0.11, p=0.916>0.05)
and so the parameter is not required in the model. We see that the Box-Pierce statistic
remains the same at 38.6 so there is no improvement in fit obtained by using an MA(2)

model.
Conclusion

We will therefore use an MA(1) model without a constant. This conclusion is consistent with
that reached by looking at the acf.

ARIMA Model: d1d12 (AR(1) with constant)

ARIMA model for dldl2

Final Estimates of Parameters

Type Coef SE Coef T P
AR 1 -0.3102 0.0837 -3.71 0.000
Constant 0.231 1.030 0.22 0.823
Mean 0.1766 0.7864

Number of observations: 131
Residuals: SS = 17939.9 (backforecasts excluded)
MS = 139.1 DF = 129

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48
Chi-Square 11.7 38.3 45.0 60.1
DF 10 22 34 46
P-Value 0.304 0.017 0.098 0.080

Examining the AR (1) model we see that the constant ferm is not significantly different
from zero (T=0.22, p=0.823>0.05). We can therefore remove the constant term.

ARIMA Model: d1d12 (AR(1) without constant)

ARIMA model for dldl2

Final Estimates of Parameters
Type Coef SE Coef T P
AR 1 -0.3099 0.0834 -3.72 0.000

Number of observations: 131
Residuals: SS = 17946.8 (backforecasts excluded)
MS = 138.1 DF = 130

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48
Chi-Square 11.7 38.3 45.0 60.1
DF 11 23 35 47
P-Value 0.385 0.024 0.120 0.096

Examining the AR (1) model without a constant, we see that the parameter is significantly
different from zero (T=-3.72, p<0.0005). The Box-Pierce statistic is significant (x*=38.3,
p=0.024<0.05).

So the model provides an adequate fit. Now we see what happens when a second AR term is
added.
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ARIMA Model: d1d12 (AR(2) without constant)

ARIMA model for dldl2

Final Estimates of Parameters

Type Coef SE Coef T P

AR 1 -0.3102 0.0882 -3.52 0.001

AR 2 -0.0008 0.0898 -0.01 0.993

Number of observations: 131

Residuals: SS = 17946.8 (backforecasts excluded)
MS = 139.1 DF = 129

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48

Chi-Square 11.7 38.3 45.0 60.1

DF 10 22 34 46

P-Value 0.304 0.017 0.098 0.080

The second AR parameter is not significantly different from zero (T=-0.01, p=0.993>0.05)
and so the parameter is not required in the model. We see that the Box-Pierce statistic
remains the same at 38.3 so there is no improvement in fit obtained by using an AR(2)

model.
Conclusion

We will therefore use an AR(1) model without a constant. This conclusion is consistent with

that reached by looking at the pacf.
Overall conclusion

We could argue that either one of these models (MA (1) or AR (1)) would be suitable to

apply to the time series.

ARIMA Model: d1d12 (MA(1) without constant)

ARIMA model for dldl2

Final Estimates of Parameters

Type Coef SE Coef T P

MA 1 0.3212 0.0837 3.84 0.000
Number of observations: 131

Residuals: SS = 17978.9 (backforecasts excluded)

MS = 138.3 DF = 130

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36
Chi-Square 12.0 38.6 46.1
DF 11 23 35
P-Value 0.367 0.022 0.099 0

Forecasts from period 144
95 Percent Limits

Period Forecast Lower Upper
145 0.3043 -24.9497 25.5582
146 -0.0926 -26.4896 26.3044

48
62.1
47
.069

Actual
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We need to forecast X 45 and X4

Let Xt = monthly ticket sales (in thousands) in month t
Wt=Yt—Yt-12  (series of the 12" differences of the Yt)

From ARIMA command for AR(1) model without constant this model is estimated by
Wt =7t -0.3212Z-1

We need to forecast X;45 and X 4.
From forecasts above Wiss = 0.304 and Wy46=-0.093
To complete the forecasting of next 2 observations we must connect the X’s and W'’s.
Wit=Yt- Y12
= (Xt- Xt-1) — (Xt-12 - Xt-13)
= Xt — Xt-1 — Xt-12 + Xt-13
Therefore Xt = Wt + X1 + Xt12- X t-13
We use this expression to help forecast X5 :
Xias= Wigs + Xiaa + Xi33 - Xizn
On the right hand side we have a forecast for W45 and we know the other X’s.
Therefore Xm_5= W145 + X144+ X133 - X132
= 0.304 + 432 + 417 - 405
=444.3
To forecast X4 we not that :
X = Wi +Xps + Xiza- Xis3

= -0.093 +444.3 + 391 -417
=418.2
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