The Fibonacci Sequence and Generalizations

Abstract: This paper gives a brief introduction to the famous Fibonacci sequence and
demonstrates the close link between matrices and Fibonacci numbers. The much-studied
Fibonacci sequence is defined recursively by the equation yy.; = yi+; + v, wherey; = 1
and y,=1. By using algebraic properties of matrices, we derive an explicit formula for the
kth Fibonacci number as a function of k and an approximation for the “golden ratio” y;.;/
vi- We also demonstrate how useful eigenvectors and eigenvalues can be in
understanding the dynamics of linear recurrence relations of the form yy., = ayi; + by
where @, b € R.

I. Introduction

The Fibonacci sequence, probably one of the oldest and most famous sequences of
integers, has fascinated both amateur and professional mathematicians for centuries.
Named after its originator, Leonardo Fibonacci, the Fibonacci sequence occurs frequently

in nature and has numerous applications in applied and pure mathematics.
The Fibonacci sequence is the sequence of numbers:
0,1,1,2,3,5,8,13, 21...,

where each member of the sequence is the sum of the preceding two. Therefore, the nth

Fibonacci number is defined recursively as follows:

yi=y:=1 (1)
Yn=Vn1tYn2 n23

Historically, this sequence appeared for the first time in a problem posed by the Italian
scholar Leonardo Fibonacci in 1202. In his famous work Liber Abaci, Leonardo

Fibonacci asked the following famous question on the rate growth of rabbits:



Suppose that on January, 1* there are two newborn rabbits, one male and one
female. What is the number of rabbits produced in a year if the following conditions hold:

1) each pair takes one month to reach maturity

2) each pair produces a mixed pair of rabbits every month, from February on, and

3) no rabbits die during the course of the year.

Assume that on January 1* there is one mixed pair of baby rabbits. At the beginning

of February there will still be one pair of rabbits since it takes a month for them to

become mature and reproduce. In February one mixed pair of rabbits will be produced

and in March two pairs will be produced, one by the original pair and one by the pair

produced in February. Following this pattern, in April, three pairs will be produced, and

in May five pairs. More compactly,

TABLE 1
Solution of the Fibonacci Problem on Rabbits

Number Month Number of Number of Total
Adult Pairs Baby Pairs

1. January 0 1 1
2. February 1 0 1
3. March 1 1 2
4. April 2 1 3
5. May 3 2 5
6. June 5 3 8
7. July 8 5 13
8. August 13 8 21
9. September 21 13 34
10. October 34 21 55
1. November 55 34 89
12. December 89 55 144
13. January 144 89 233

Source:




Under the conditions of the problem, the total number of pairs of rabbits one year
later will be 233. The entries in the last column of Table 1 are the first thirteen members

of the Fibonacci sequence.
II. The Fibonacci Sequence in Matrix Form

Although the recursion definition in the introduction gives a complete description
of the Fibonacci sequence, it is not particularly useful if we are interested in finding an
arbitrary Fibonacci number yx. For example, if we want to compute yjgo0 using the
definition, we shall need to compute all 999 members that precede it. Therefore, we
derive an explicit formula for the kth Fibonacci number as a function of k by solving the

recurrence relation in matrix form.

Let us modify the original definition by adding the following trivial equation:

Yi+1 = Ykl 2)
Y2 = Vi1 T Yk

This system of equations can be written in matrix form by letting,
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we can rewrite the matrix equation in the general form:

and noticing the relation,

Ui = Auy 3)



The vector u; can be written in terms of ug by noting the relation,

Uj =Au0
_ _ 42
u —Au1 =A Uy

3
us =Au2=A Uy

k
Uy =A Uy

Since yy is the top entry in u; and the matrices 4 and uare known, we can readily use this
equation to find an arbitrary Fibonacci number. For example, ys can be computed from

the equation us = Auy:

However, this formula is useful in practice only if we can find a convenient way to
compute A* for higher values of k. Diagonalization of 4 provides a possible solution to

this practical problem.

First, in order to determine whether A is diagonalizable, we derive and solve the

characteristic equation of 4:
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Next we solve for the eigenvectors,
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For A1,
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Since the 2x2 matrix A has two distinct eigenvalues, it follows that A is

diagonalizable and there exist a diagonal matrix D and an invertible matrix P, such that:

A=HP ', (6)

where D, P and P~ are constructed as follows:
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Since A is diagonalizable, 4" can be easily computed by applying the formula:
A =D ‘P, (7)



In this way computations are significantly facilitated since D is a diagonal matrix and

computing D" does not pose any serious technical difficulties.

From equation (5), we can derive a general formula for 4 in terms of A, and A,.

R [0 a4 L[ =A][A o] 1 oA
1 1|0 A J5|-1 A, | 5| 1 1o A [-1 40
Multiplying the three matrices out and simplifying yields,
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From equation (6), the k-th Fibonacci number y, can be found from the relation,
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Hence, y, = —= (A4, —47*'4,). Using the fact that the two eigenvalues have the

J5

property, 4, A, = —1, the expression for y, simplifies to:

1 a1 (1e5) (1=45)
yk_s(ﬂ“llz)ﬁl:( 2 ] (T]} )

The formula above was discovered in 1843 by the French mathematician J.P.M.Binet

(1786-1856) and is known today in the literature as the Formula of Binet.



The second term of Binet’s formula is less than one in absolute value, so as k gets

progressively larger, it will approach zero. Therefore,
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Hence, the sequence of ratios of consecutive Fibonacci numbers ( y,,, / y, ) is convergent

and its limit is given by:
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The limit ¢ is called the Golden Mean, and has been regarded since ancient times as the

aesthetically ideal ratio of width to height for a rectangle. It is commonly reflected in
natural objects which grow by a linear increment (e.g. snail shells, sunflowers, and in
great many other places).
I11. Generalizations of the Fibonacci sequence. Lucas sequence.
The Fibonacci sequence is a special type of a broader class of recurrence relations that
occur frequently in applied mathematics. A k-th order linear homogenous recurrence
relation is a relation of the form:

a,=ca,, +ca, ,+. +ca, , , (12)

where ¢,,¢, ., ¢, €R.

In particular, the Fibonacci sequence is a second order sequence with ¢, =1 and c,=1.



The analysis applied for the Fibonacci sequence in section II can be readily generalized

for any second order linear recurrence relation with constant coefficients of the form:
a,=ca, +c,a, ,, (13)

where ¢; and ¢, are non zero constants. A sequence derived from this equation is often

called a Lucas sequence. It is an interesting question to explore whether the method we

used for deriving the formula for y; of the Fibonacci sequence can be applied to find a

similar formula for y, of the Lucas sequence.

Let us start with several examples:

1. Consider the following Lucas sequence:

YVic+2 =3yk+1 -2J/k, ( 1 4)
where y,=0 and y,=1.

The first few terms generated by the equation above are 0, 1, 3, 7, 15, 31, 63.....
In order to find an explicit formula for yx , we can repeat the same method we used for

deriving the formula of Binet for the Fibonacci sequence.

First, we add the trivial equation:

Victl = Vi1 (15)
YVir2 = 3Vkr1 -2k
By letting,
ukz{yk} and A:{O 1}
Via -2 3
and noting,
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the system of equations (15) can be written in matrix form as



w1 = Auy (17)
The vector u; could be written in terms of uy by noting that
we = Ay = Adugo=.....=A"uy (18)

As in the case for the Fibonacci sequence, the main goal is to find a general formula for

A" by possibly diagonalizing A.
In order to diagonalize A, we derive and solve the characteristic equation of A:
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Since A has two distinct eigenvalues, it is diagonalizable and can be expressed in the
form 4= HP ~' for some invertible matrix P and a diagonal matrix D. In fact, the
columns of P are the eigenvectors of A corresponding to A, and A,, and the non-zero

entries in D are the two eigenvalues.

The eigenvectors corresponding to the two eigenvalues are computed as follows.

For 4, =2,

-2 1 0] I -05 0 0.5
— =X, =

-2 3-2 0 0O 0 O 1

For 4, =1,

-1 1 0 1 -1 0 1
— =X, =

-2 3-1 0 0 0 O 1

Let us construct:



2 0 0.5 1 -2 2
D= P = andP = )
0 1 1 1 2 -1

Since 4 is diagonalizable,

05 112 01 [-2 2 2-2F 2k

k k p-1 __ _

A =ptpt = CEl T L o
1 1llo 1|2 =1 |2-2 1+2

From equation (16),

y 2-2F 21 |[O] [2*-1
U = e Akuo = _Al+k 1+k = 1+k (21)
Viur 2-2 1+2 1 27 1

=2 -1 (22)

Hence,

In order to verify the obtained formula, we plugink =0, 1,2, 3,4.. in () and get 0, 1, 3,
7, 15.., which are exactly the first few terms of the Lucas sequence defined in example 1.
In this case, the method used to obtain the formula for the Fibonacci sequence works well

and yields an explicit formula for the k-th term of the Lucas sequence.

However, let us consider the following example:

2. Consider the following Lucas sequence generated by the equation:

Vi+2 = 2Vk+1-Vk, (23)
where yp=0and y;= 1.

The first few terms this sequence are 0, 1, 3, 7, 15, 31, 63.....
Following the same steps as in example 1, the equation above can be also written in

matrix form. Let



Then,

0 1
Auk{ HW{ Ve }um, (24)
-1 2] | »ia 20—y,

Hence equation (23) can be stated compactly as

Up+] = Auk ’ (25)
or alternatively as

wi =A*uy (26)

In order to diagonalize A, we solve its characteristic equation,

&( A—M)z‘__); ‘:/12—2,1+1:(/1—1)2=0 (27)

2-4
A, =1

Since the 2x2 matrix A has only one distinct eigenvalue with multiplicity 2, it follows

that A is not diagonalizable. Therefore, there is no general formula for A*and hence for

Y-

From the two examples above we can derive the following two conclusions about our

matrix method for solving second order recurrence relations:

1) If the characteristic equation of A has two distinct solutions, then A is
diagonalizable and we can derive an explicit formula for yy.
2) Ifthe characteristic equation of A has less than two distinct solutions, then A is

not diagonalizable and our method for deriving yix cannot be applied.

More formally, our conclusions are consistent with the following more general theorem:



Theorem: Let y and J be the distinct solutions of the equation x* —a —b = 0, where

a,b € Rand b # 0. Then every solution of the linear homogenous recurrence relation with
constant coefficientsa, =a , , +fm , ,, where ap = Cp and a; = Cy, is of the form
a,=Ay" +Bd5"

for some constants 4 and B.'
IV. Conclusion

This paper discussed how linear algebra can be applied to the analysis of linear
recurrence relations, a number of which arise frequently in applied and pure math. In

particular, it emphasized the concepts of eigenvalues and eigenvectors and how helpful

they are in describing and understanding infinite sequences of integers.
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! For the proof of this theorem see Koshy, p.143-4



