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By considering one or more collections of “ideas and patterns” discuss the validity
(or otherwise) of Pappas’ view.

Introduction

Many junior mathematics students would be forgiven for believing that the Greek
mathematician Pythagoras (c.580 B.C) invented the concept of the right-angled
triangle, such is the delirium that surrounds his theorem concerning squares in
year nine. It is interesting to note however that the right-angled triangle has been in
use as an aid to construction and considered as a mathematical curiosity since as
far back as 2000BC.

This paper will consider the development of number and geometry in the societies of
the ancient world. We shall examine the part it has played in the Indian,
Mesopotamian, Egyptian and Greek societies, with a little more information about
the Pythagorean School and of course Pythagoras himself.

As the subsequent text refers to Pythagoras’ Theorem and Pythagorean Triples, they
are explained at this stage.

Pythagoras’ Theorem
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Pythagorean Triples

These are groups of three numbers, which satisfy the equation of Pythagoras’
Theorem.
For example: {3,4,5} {5,12,13} {7,24,25} {9,40,41} {11,60,61}
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Analysis

Man’s interest in geometrical patterns dates back to early prehistoric times.
Examples have been found of plaited rushes to form rudimentary textile art.
Additionally these arrangements have developed into clothing, tents and rugs.
However, geometrical patterns have not been restricted solely to textiles. They have
also formed a noticeable part of ancient architecture. Examples have been found on
Mexican monuments and Peruvian architectural remains. This use of geometry to
beautify their surroundings suggests that the ancients had the beginnings of later
scientific geometry. The first being the ability to abstract, in other words being able
to identify and duplicate the simple geometric shapes occurring naturally. The
second, the ability to take a three-dimensional figure and represent it two
dimensionally. Essentially these people were showing an understanding of the first
principles of mapping. As man’s interest in and understanding of geometry evolved,
it became a tool for the solution of practical problems. For example, building a
house on level ground or measuring out square fields. Various schemes were
devised that allowed man to make these things happen

Babylonian Mathematics

In “A History of Mathematics”, Boyer emphatically states that:
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Before discussing Babylonian geometry, we must first take a look at the history of
Babylonian mathematics generally.

As far back as 3000BC, the Sumerians were building homes and temples in the area
and decorating them with geometrical mosaics. They had already developed a
system of cuneiform writing a millennium before and there is evidence that writing
had been in existence in the area as far back as SO00BC. A significant event in the
history of the area, however, comes with the invasion of Sargon the Great, the leader
of the Semitic Akkadians. Under him the indigenous Sumerian and the invading
Akkadian cultures were merged. Sargon’s empire stretched from the Black Sea in
the north to the Persian Gulf in the south. Consequently a considerable amount of
information sharing subsequently took place. Thereafter followed Hittite, Asyrian
and Persian invasion. All seemed to join the existing culture and the strong cultural
unity remained. The use of the cuneiform script formed a strong bond between the
peoples and today we have a huge collection of the baked clay tablets bearing a
plethora of documents ranging from laws and school lessons to stories and personal
letters.

Tablets dating from around 1700BC indicate a well-established number system. The
Babylonians had taken the decimal (basel0) system, used by many cultures around
the world at that time, and integrated it into a sexagesimal (base 60) system. A
measurement of sixty units can be divided into halves, thirds, quarters, fifths,
sixths, tenths, twelfths and fifteenths more easily than a measurement of 100 units.
So it appears that the sexagesimal system had been adopted to facilitate the
subdividing that accompanies measuring. The efficacy of the Babylonian
sexagesimal system is apparent by its survival into the twentieth century, in the
form of our current measurements of angles and time.

The Babylonian numbers are shown in the attached appendix. To complement their
numbers, the Babylonians developed a place value system, an extraordinary
achievement, some 4000 years ago. They then saw that they could use there
developed “digits” in columns representing 60°, 601, 602, etc to represent any
number.
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For example the following number in cuneiform script equates to 424,000 in
decimal:

T &% &W £

60° = 216000 602 = 3600 60T = 60 60° = 1
1 57 46 40

(1 x 216000)+(57 x 3600)+ (46 x 60)+(40 x 1) = 424,000

The Babylonians were really quite remarkable, in their ability to understand and
manage numbers. As well as their huge contribution to numeration, they developed
approximation algorithms, such as the one they used for finding V2 and a process of
calculating powers that echoes our modern day logarithms. A curious aspect to
consider is the fact that they seemed only to investigate and develop mathematics
for particular jobs in hand. There seemed to be no development of mathematics
simply for pleasure, or to see if they could take something a step further. It all
seemed very practical.

It is clear from some of the Sumerian tablets that the Babylonians had a good
understanding of Pythagoras Theorem. The section below is an extract from a tablet
held in the British Museum.
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The Yale tablet, so named because of its location at Yale University shows the
relationship between the sides of a square and its diagonal. A diagrammatic
representation is shown below.

30

1,24,51,10
T

The digits represent the sexagesimal Babylonian digits.
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Babylonian Values

3060 = 3049

1-2475171060 = 1.414212926310
42.25,3560 = 42.42638888910

The diagonal of the square shows the ratio of the triangle’s side to the hypotenuse,

Modern Values

1.414213562
42.42640687

(V2) with the length beneath. The side of the triangle measures 30 units. Comparing
the Babylonian values with today’s calculated result yields a startling result. This
not only shows an understanding of the principles of Pythagoras’ Theorem, but also

an astonishing calculation of V2.

Amongst the many other tablets to emerge from Mesopotamia has been the so-called

Plimpton 322 tablet, kept in the Plimpton collection at Columbia University. Dating

from between 1800 and 1650 BC the tablet appears to show a record of commercial
transactions. However under closer inspection by the mathematical historians
Neugebauer and Sachs it proceeded to express a whole new meaning.

Consequently, as is the way with items from antiquity, furious debate has raged.

The tablet is divided into four columns thus:

(P72 7rarziders are SFDA7r 72 778 07 X777XWSEXACRS 77 WSS 77 778 Sl 77070707 0 7r 7 STOHA7r 77

Fradess afer)
Y 4 Row Number

1;59,0,15 (1.9834) 1,59 (119) 2,49 (169) 1
1;56,56,58,14,50,6,15 (1.9492) 56,7 (3367) 1,20,25 (4825) *|2
1;55,7,41,15,33,45 (1.9188) 1,16,41 (4601) 1,50,49 (6649) 3
1;53,10,29,32,52,16 (1.8862) 3,31,49 (12709) |5,9,1 (18541) 4
1;48,54,1,40 (1.8150) 1,5 (65) 1,37 (97) 5
1;47,6,41,40 (1.7852) 5,19 (319) 8,1 (481) 6
1;43,11,56,28,26,40 (1.7200) 38,11 (2291) 59,1 (3541) 7
1;41,33,59,3,45 (1.6928) 13,19 (799) 20,49 (1249) 8
1;38,33,36,36 (1.6427) 8,1 (481) * 12,49 (769) 9
1;35,10,2,28,27,24,26,40 (1.5861) 1,22,41 (4961) 2,16,1 (8161) 10
1;33,45 (1.5625) 45,0 (45) 1,15,0 (75) 11
1;29,21,54,2,15 (1.4894) 27,59 (1679) 48,49 (2929) 12
1;27,0,3,45 (1.4500) 2,41 (16l) * 4,49 (289) 13
1;25,48,51,35,6,40 (1.4302) 29,31 (1771) 53,49 (3229) 14
1;23,13,46,40 (1.3872) 56 (56) 1,46 (106) * 15

The fourth column simple denotes the row number of the tablet.
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Columns three and four however, show possible values of z and y that satisfy our
original Pythagorean equation.

For example (from row 1): 169> - 1197 = 120°.
Although there are a couple of scribal transcription errors in the original (marked

with *), the middle two columns show a list of Pythagorean Triples. An achievement
in itself, until we look at the first column. A little more complex we find that it is

2

z

populated with values of {—J . This could be considered to correspond to the
y

secant function, namely . However this is not the view of the majority of

cos@
mathematical historians. There is still much speculation as to the application of this
column, but one fact is certain. The Babylonians not only were able to understand
the relationships within a right-angled triangle. They also were able to calculate and
document their findings, no doubt as they used them for practical purposes.

The Indian Connection

In around 1500 BC the Vedic people arrived in India from the area we now know as
Iran, bringing with them the religious texts known as the Veda from which they take
their name. Appended to the Veda were additional texts known as the Sulbasutras
which gave the Vedic the rules they needed for constructing sacrificial altars. The
altars needed to be built to very precise measurements and so accurate
mathematics was necessary. One of the difficulties in researching ancient Indian
mathematics is that everything we know is contained within the Sulbasutras.
Therefore we do not know whether they simply used mathematics for their religious
requirements or used mathematics to enhance their learning.

An aspect of the Sulbasutras is the absence of any proofs of their mathematical
rules. Some rules are exact, such as the method of constructing a square of equal
area to a given rectangle, whereas others, particularly methods connected with
circles and the use of n are erroneous. Some sections within the Sulbasutras which
give rules for the construction of right angles using lengths of cord divided into
Pythagorean Triples. It is disappointing, however, that all of these triples were
known during the Mesopotamian times between 2000 and 600 BC and may have
percolated South or have passed across to the Vedic people from Mesopotamia.

Three of the Sulbasutras were authored by Baudhaya, Apastamba and Katyayana.
They would not have been simply scribes nor would they have devised the
mathematics contained within them. They would instead have been men of great
learning, whose interest in the mathematics would have been purely for religious
purposes. One element of the volumes identifies that they knew that the square on
the diagonal of a rectangle is equal to the sum of the squares on the other two sides.

From Katyayana
“OPR r0pe HWIF X T B ST LW L L0 7B oo W0 0 7eCti e BroSmCes
a707e0 WX F7E /B7e X WO-2mD7 7Z07%Ws s »ole wgewer “

and from Baudhaya

“PR r0pe W IF AT B ST /2EICPOSS 7B oo W00 SCEO7e prolmeces azrared
SWE ZE S Ze 0f 7R 07 7S Eare.”

Both echo Pythagoras but it is again suggested by some that this knowledge is
derived form Mesopotamia rather than independently established.
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It should be pointed out, however, that there is a remarkable approximation to V2
contained within the Sulbasutras. Namely:

“Prrease a #:rACTLHT FF RS 77 AAMIATIMIT D wr AT HS 0u7r D7 IWSS 7B
R CP T 23 IR Ay g 2y o

In other words : V2 = 1+1/3+1/(3x4)-1/(3x4x34) = 577/408
Evaluated, the result is 1. 414215686, which when compared to the correct result of
1.414213562 shows that the approximation is correct to 5 decimal places.

The author B Datta in “The science of the Sulba” suggests that this approximation
was arrived at by an intricate process of constructing an altar twice the size of an
existing one. By creating two squares, cutting up one of them and assembling it
around the original square to produce a square twice the size, the new square would
have a side of V2. By dividing and manipulating the remaining pieces, it is possible
to very nearly complete the altar and at the same time generate the above
approximation.

One should carefully assess the level of mathematics India at the time. If one is to
believe Datta, it would indicate that Indian progress was much greater than had
they acquired their knowledge by simply copying the Mesopotamians.

Egypt
It must be said that although Egyptian engineering was most impressive, Egyptian
mathematics was on a much lower plane than that of the Babylonians at the same
time. Most of our knowledge of Egyptian mathematics comes from two papyri. The
Moscow Papyrus and the Rhind Papyrus.

The Moscow Papyrus resides in the Museum of Fine Arts in Moscow; it was bought
by V. S. Golenishchev, who died in 1947. Its author is unknown.

The Rhind Papyrus (also called the Ahmes Papyrus) is named after the British
collector, Henry Rhind, who acquired it in 1858. It was copied by a scribe, Ahmes in
around 1650 BC from another document written around 2000 BC. This possibly was
in turn copied from a document from about 2650 BC, incidentally, the time of the
Egyptian architect Imhotep. The man credited with the construction of Egypt’s first
pyramid. The Rhind Papyrus is now in the British Museum

From what we have seen of the Sumerians, they developed a logical, progressive
number system based on 60. Not so with the Egyptians. Instead they evolved a base
10 system comprising hieroglyphs and symbols to represent powers of 10 and single
vertical strokes to represent single units. Depending on the place value, a different
symbol was used to represent the digit. Hence Egyptian numbers could appear in a

variety of orientations.
1|02 i 0| ﬁ

1 10 | 100 [ 1000 [ 10000 100000 10

Egyptian numeral hieroglyphs
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Some examples of Egyptian numbers are shown below:

© 9 {113

e Y
AR A fgg
o0 00 ) N

276 4622

This indicates that although addition and subtraction may be fairly simple
processes, experience of manipulating Roman Numerals will warn you that
multiplication and division of Egyptian numbers was a complex business. This,
however did not pose a great problem. Instead of wrestling with the difficulties of
multiplication and division, the Egyptians simply adapted addition and used their
numerical skill.

If, for example, they wanted to multiply two numbers together, say 35 and 17. They
would form two columns thus:

17
34
68
136
6 272
2 544

4
4

w B o s N

v

The centre column simply starts with one and then doubles as we go down. The
right hand column starts with 17 and again doubles as we go down. The clever part
of the process is the left-hand column, which contains a tick for each component of
35,

i.e. 35 = (1+2+32) . The Egyptians would then have added together the
corresponding numbers in the right hand column i.e. 17+34+544 to arrive at the
correct answer of 595. An admirable way of multiplying using just doubling and
addition.

Conversely, should division be required, for example, 798/19, it would be a case of
reversing the process.

1 19
v 2 38

4 76
v 8 152

16 304
4 32 608

64 1216

Keep doubling 19 until you have enough to make 798 and then add up the
component values in the other column, i.e. 32+8+2. The answer, of course, 42.

Not only were the Egyptians conversant with fairly hefty number crunching, but
they also managed to deal with fractional quantities with proficiency. The secret of
their success lies in unit fractions. Many mathematical archaeologists ask why unit
fractions were used. The answer may be simply a matter of culture and convention.
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It appears that when fractions were first used by the Egyptians, they restricted
themselves to simple unit fractions such as %, 1/3, ¥4 and so on. The hieroglyphic
representation of these was to use an oval, representing the mouth, meaning “part”,
atop the denominator, and omit the numerator. Essentially representing the
numerator and the vinculum (dividing line) by one hieroglyph.

So we can see that in the years to come, when the

@ Egyptians required a method of representing non-unitary
fractions, a complete restructure of their notation would be
E E H needed. This did indeed occur with the shift from writing in
hieroglyphics to writing in the more comprehensible hieratic
H E numerals between 2200 and 1600BC.
1/5

In addition to their abilities with numeracy, the Egyptians were competent with
geometry. There is still great debate as to whether their geometry is coincidental
rather than intentional as sadly in comparison to wealth of tablets we have from the
Babylonians we have only two papyri and a handful of other documents to
substantiate any conjecture. It appears however that the Egyptians had a difficulty
establishing a distinction between exact relationships and approximations. A
document found at Edfu indicates a general formula for the area of any
quadrilateral. To take the product of the average of opposite sides. This works fine
for rectangles and squares, but when taken simply for a trapezium or any other
irregular quadrilateral, it becomes completely useless. It does suggest however that
the Egyptians were looking for some kind of relationship among geometric figures. It
is also often also said that the Egyptians were familiar with the Pythagoras’
Theorem, perhaps due to their predilection for the construction of triangular
edifices. There is however, no indication of this on either the Rhind or the Moscow
Papyrus. But, we should not discredit the Egyptians too much. There is a section on
the Moscow papyrus which clearly shows their understanding of the calculation of
the volume of a truncated pyramid. Something that should not surprise us too
much.

The problem is posed:

“The base is a square of side 4, the top a square
of side 2. The height is 6. Calculate the pyramid.”

The solution shows the calculation:

The area of the base 4x4=16, the area of the top,
2x2=4. Then the product of the side of the base
and the side of the top. 4x2=8. These three are
added together. 16+4+8=28. Next, the height is
divided by 3. 6/3=2. Finally, 1/3 x height x 28 to
give 56.

We can see that although not formulaically expressed, the egyptians had a clear
knowledge of the formula for the volume of a truncated pyramid. Namely:

1
4 =§h(ar2 +ab+b*)
where h is the height and a and b are the sides of the base and top respectively.
It appears in conclusion that the Egyptians had a very promising start in

mathematics and geometry, but did not really progress as well as is supposed by
many.
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The Golden Age of the Greeks

Home of Pythagoras of Samos and Thales of Miletus, Greece is considered by many
to be the location where mathematics moved from simply a tool for the solution of
practical problems to the more philosophic artform it is considered by some today. It
was the start of looking at problems for more esoteric purposes. Considering how a
problem could be solved regardless of necessity.

Thales of Miletus was born 640BC and became a successful merchant. His travels
took him to Babylon and Egypt. He may have been the cause of the cross pollination
of some ideas. But it is clear that he had an interest in geometry, perhaps more from
the point of view of trying to establish the reason behind facts that the Egyptians
discovered empirically. He applied deductive reasoning to a variety of problems,
mainly practical to satisfy his curiosity. There is no written legacy from Thales, but
he will always be known as a mathematical pioneer.

In around 580BC Pythagoras was born on the Greek island of Samos. We know that
he was a student of Thales, and that in about 530BC he left the island of Samos for
Southern Italy. When he arrived in Italy, Pythagoras founded the Pythagorean
Brotherhood, a collection of six hundred followers, who not only understood his
teaching, but also contributed by adding new ideas and proofs. They lived a kind of
communism supported by their patron, Milo of Croton, the wealthiest man in Croton
and one of the strongest men in history — a fearsome ally. On joining the
brotherhood, followers gave all their possessions to aid the group. Each member was
to swear an oath of secrecy, never to reveal his or her mathematical discoveries.
Indeed one member of the group was drowned after he disclosed that a new
geometric solid, the dodecahedron, had been discovered. The secrecy of the
brotherhood is a nuisance historically, because it clouds the evidence we do have
and accounts for the overall lack of it.

One thing can be certain, Pythagoras and his brotherhood changed mathematics
forever. Their aim was to study Number. They believed that Number should be
treated as a god, and the closer they came to understanding it, the closer they came
to the gods.

The Brotherhood did not just study number, they looked for numbers with special
meaning. One of the series they discovered was the range of “perfect” numbers.
Namely the range of numbers whose sum of factors equalled themselves. For
example.

The factors of 6 are (1,2,3) - the sum of 1+2+3 equals 6.
The factors of 28 are (1,2,3,4,5,6,7) - the sum of 1+2+3+4+5+6+7 equals 28

It was not until another two hundred years later that Euclid, another greek, related
this in algebraic form —

6=2" x(2%-1)
28=2% x(2°-1)

As well as having an interest in numbers ge> se, the Pythagorean Brotherhood
investigated the mathematics of musical harmonics and the planetary orbits, but
perhaps the most significant work by Pythagoras is his work on the right-angled
triangle. As we have already seen the theorem which bears his name was in use
previously by the Babylonians, but with one important omission. The Babylonians
established the rule empirically, that is to say, by discovering that for all the right-
angled triangles they tried, the rule held. They did not prove that it would for work
for Mright angled triangles. Pythagoras, on the other hand, did.
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He would simply have constructed a diagram similar to the following:

The sides of the outer square
measure (a+b) x (a+b), the sides
of the inner skew square measure
c x c.

The area of the inner square is
therefore c” and the areas of each 1
of the triangles is ab/2

Consequently, b

c® + 4ab/2 = (atb)?

but (atb)? = a’*+b® +2ab

a’? +b® +2ab

so ¢ +2ab
which leads us to our well known equation:
c® = a’ + p.

It is unclear exactly how Pythagoras proved the theorem, although the above
solution does seem likely. Moreover, there is conjecture that it may not have been
Pythagoras himself who came up with the proof, but instead another unnamed
member of the brotherhood. To make matters worse, there are some, eminent
Cambridge Mathematicians among them, who believe that Pythagoras himself may
not even have existed!

Conclusion.

Pappas’ statement that “#® Fx0720, 7072 7077CS & ZE FRBWO?Z0) Zrle & 75
=as”, is, I believe, borne out by the preceding dialogue. It is clear that in order to
trade with adjacent communities, a satisfactory number system would have been
required. It is interesting to discover that the Ancient Greeks developed a number
system based on their alphabet, but due to the independence of the various island
states, slight differences drifted in. (O’Connor & Robertson - St Andrews University
WebPages). Ideas about number systems would have developed, as they were
needed. A parallel can be drawn with the Egyptians, who in around 1800 BC
developed a system of number, the hieratic numerals, which allowed them to work
more efficiently.

Pappas goes on to say, “ # & #& 7 B0?70,Co7rece 7x77ese AmBOS O7Lmpo#e77S
70 072 A7D7k7 a-Lmm0 co rrew F7e 5 7:o#Wze.” It is clear that this naturally
follows from his previous statement. Once it was seen that the ideas that had been
invented had a useful purpose in simple commerce and construction, it became
clear to all interconnectivity would increase efficiency. This is most evident in the
Babylonians who applied their knowledge of mathematics to trade and taxation.
Thereby initiating the forerunner of cash-flow forecasting.

Pappas’ statement concludes that “#2 grese>#7®2s 0= #2 pass a2z esse7# W0
e fawe”. 1 believe that this particular statement is the essence of his view. For
mathematics could not possibly have developed the way it has over the last three
thousand years without the determination of unnamed individuals to persevere in
expanding on the developments of their forebears. It is essential that the young of
today are encouraged not only to think of mathematical development in the way that
it can help the current generation, but also how much of a foundation they will be
building for the mathematicians of many generations to come.
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