Mas3039 Mathematics: History and Culture

Topic 2: The Greek Legacy

Essay (2): Discuss Archimedes’ double reductio ad absurdum proof for the
quadrature of the parabola. Compare and contrast this to a modern calculus proof of
the same result.

Archimedes of Syracuse (287 — 212 BC) is known as the greatest mathematician of his time
and is considered to be one of the greatest of all time. He dominated Greek maths in the third century
BC despite not being a native of the city of Alexandria, the centre of mathe matical activity.' The son of
an astronomer, Archimedes is credited with many great discoveries in mathematics, mechanics and
engineering. During the second Punic war Syracuse was besieged by Romans and we are told that
Archimedes invented war machines such as catapults, ropes and pulleys, and devices to set fire to the
ships to keep the enemy at bay.! Archimedes did not think much of these inventions but it meant that
mathematics and science were brought “more within the appreciation of the people in general”.”

Archimedes’ work was both productive and thoroughly detailed and he was never reluctant to
share his methods of discovery. What was different about Archimedes compared to other
mathematicians of his time was the fact that his work illustrated his method of discovery of a theorem
prior to presenting a rigorous proof. This was to stop people claiming his work to be their own and he
is quoted as saying, “those who claim to discover everything but produce no proofs of the same, may
be confuted as having pretended to discover the impossible”.>

The Method is a treatise containing a collection of Archimedes methods of discovery which
was unexpectedly found in Jerusalem in the late nineteenth century.” The Method includes
Archimedes’ methods of discovery by mechanics of many important results on areas and volumes. It is
the quadrature of the parabola, meaning to find the area of a segment of a parabola cut off by a chord*,
which forms the subject of the first proposition of The Method. Archimedes derives the result in two

ways, firstly mechanically and secondly purely geometrically. In fact Archimedes devoted a separate

treatise on the mathematical proof of this theorem.” The geometrical proof is based on Euxodus’
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method of exhaustion technique which means to calculate an area by approximating it by the areas of

polygons. In Archimedes’ proof the polygons he uses are triangles.

Archimedes cut a parabola with a chord BC creating a parabolic segment and then drew a
triangle ABC whose base was the length equal to that of the chord BC. The triangle ABC leaves two
segments in which Archimedes adds another two triangles ABD and ACE. Again these two triangles
create four more segments in which Archimedes constructs four more triangles. Archimedes continued
this process realising the more triangles he constructed, the more closely the sum of these areas were
nearing the area of the parabolic segment. He also noted that the total area of the triangles created at
each stage is a quarter of area of the triangles constructed in the previous stage.’ Archimedes used this
relationship to show that the area of the parabolic segment could be given by the sum of the infinite
series, X/4 + X/4% + X/4> + ... + X/4", which is clearly (4X)/3, where X is the area of the initial triangle
ABC.' However, infinite processes were frowned upon in his day' so Archimedes needed to prove this
in another way. He completed the argument through a method called double reductio ad absurdum,
which is Latin for “reduction to the absurd”, and is also known as proof by contradiction. Archimedes
assumed that Y = (4/3)X, X being the area of the triangle ABC, is not equal to the area of the segment,
Z, so therefore Y must be greater or less than Z. Archimedes then proceeds to rule out both of these
possibilities.

Firstly if Y is less than Z then triangles can be drawn in the segment, with total area T, giving
Z — T <Z-Y. But this would imply that T > Y which is impossible because the summation formula
shows that T < (4/3)X = Y. And secondly if Y > Z, n is determined so that ((1/4)")X <Y — Z. Since
also Y — T = (1/3)*((1/4)")X < ((1/4)"X, it follows that Z < T, which is again impossible. Hence
Archimedes proved by double reductio ad absurdum, a very common method of proof in his time, that
Z cannot be more or less than Y = (4/3)X meaning in fact that Y = (4/3)X =Z.°

An important lemma to this proof of Archimedes’ shows how to find the sum of a geometric

series and because Archimedes had no notation to express a series with arbitrarily many terms his



result was given for a series of five numbers. However Archimedes’ method can easily be generalised
to adopt a more modern notation with n denoting an arbitrary positive integer.”

To summarise, Archimedes combined the method of exhaustion with a deep geomeric
understanding and a clever summation of a series of terms with identical successive ratios to
demonstrate that the exact area of a parabolic segment is 4/3’s of the area of the initial triangle
inscribed into that arc.

Archimedes’ work on the quadrature of the parabola was both long and detailed. It is this
work by Archimedes that is considered a forerunner to modern methods of integration.® On this method
of integration by Archimedes, Chasles said, “it gave birth to the calculus of the infinite conceived and
brought to perfection by Kepler, Cavalier, Fermat Leibniz and Newton”.

For all this work how much did Archimedes actually accomplish? It is true that the method of
exhaustion is a work of a creative genius, but it did have two major flaws.” Firstly, it was not general.
For each different problem, a different ingenious way of drawing triangles or some other polygon
needed to be devised. Archimedes apparently was unable to find the area of a general segment of an
ellipse or hyperbola.' The analytic approach of the modern era is completely general to the point that
we do not necessarily use numbers. The second, and larger, flaw was that the method of exhaustion
was not at all rigorous by modern standards. Quite simply, there was no inclusion of a limit concept.
Archimedes took a segment of a parabola and filled it with some large, but finite number of polygons.
The sum of the areas of these polygons would converge to the area of the figure in an easy to work with
geometric series. But because of a lack of a concept of infinity Archimedes did not consider this as a
series, meaning it would have been impossible for him to make the method of exhaustion at all
rigorous.

It is because of these flaws in the method of exhaustion, the Greeks refusal to accept the
concept of infinity, that it is easy to ignore Archimedes’ work. But he did come extremely close to
discovering the integral. This method of exhaustion used by Archimedes is very similar to the modern
method of approximating areas of curves with simple shapes such as rectangles and trapezoids. After
Archimedes it would be over 2000 years before a suitable and rigorous method of integration that was

devised.
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It wasn’t until the early 17" century that further developments in calculus were achieved and a
modern and more rigorous calculus proof of finding the area under a curve was born from ‘first

principles’. A method is outlined and illustrated below.

Consider a single, very narrow strip with height y and of width dx and having area A, where
A is the total area under the curve between x coordinates a and b. For each such strip, 6A = ydx. Taking
the sum of all the areas from x = a to x = b we obtain the total area of A = ) A = Y ydx
As we make 6x smaller (thinner strips will yield a more accurate result for the actual area) we can
write;
A = lim) ydx
If A = yox, then by rearranging, y = 6A/0x. As we dx decreases in size this relationship will also
become a more accurate statement. So we can write;
limdA/ox = y.
But limA/8x is dA/dx
Therefore dA/dx =y
So y is the result of differentiating A with respect to x. Hence, to find y, we have to integrate (or work
backwards) to discover what A was before differentiation. So A is the integral of y, and this is written
as;
A =Jydx
Where a and b represent the bounding values for x also known as the limits. The process of integration
has been derived as the limiting case as the value of the x-increment, dx, in the summation tends to
ZEro, of;
lim) y&x = [ydx

This modern calculus proof is clearly more viable as the result can be applied to finding the
area under any curve. If you are given the equation of y, all you need to do is simply integrate it and
evaluate it between its limits a and b. Whereas Archimedes proof by method of exhaustion is only in

reference to a parabola and the result cannot be applied to ellipses or hyperbolas. The integrals arising



in the quadrature of a segment of an ellipse or hyperbola require transcendental functions.! However
the result of Archimedes proof'is also very easy to use. The area under a parabola would be (4/3)*(1/2)
times the base and the height of the inscribed triangle. The modern calculus proof introduces the
important concepts of limits and infinity unavailable to Archimedes in his time. He was also without a
number system of base 10, including the number zero, as this was introduced by The Arabians in
600AD. This would have hindered his attempts to find a more general and rigorous proof significantly.
A simple modern example using the method of exhaustion, similar to what Archimedes used,
of finding the area of a parabolic segment is achieved by using rectangles rather than triangles. For

example looking at the parabola y = x* below;

To find the area A, of the parabolic segment we inscribe equally spaced rectangles in the
region between 0 and x known as the limits. There will be n amount of rectangles each of width x/n.
The corresponding points will be denoted by x;, where x,=0, x,=x/n, X,=2x/n,...,x;=ix/n. The height of
the rectangles will be x> which implies that the area of each rectangle will be (x7)*(x/n) giving,
because x=ix/n, (x’i’)/n’ as the area of each rectangle. The last rectangle is at x=(n-1)/n. Now if we
sum the area of the rectangles, we obtain;
A, =020 + 1%/ + 2°K M’ +. 4 (-1’ = (1) *(12 + 27 + 37 +..+ (n-1))

=x’(1/*)*Y i

The sum of the squares being;
P+22+3+. . +n’=n"3 +n’/2 +n/6
This gives;
3% = k(k+1)(2k+1)
In our case the sum ends at k = (n-1), so this gives the area under a parabola to be;
An=x(I/M)*Y1* =x*(1/3 — 1/2n + 1/6n%)
This holds for any x, no matter how large. Of course to get the best approximation for the area of a

parabolic segment it’s obvious we need to have n as being very large, that is to say we need to use as



many rectangles as possible, as this reduces the error in our approximation. As n does become very
large we find that the latter two terms tend to zero and the rectangles provide a better and better
approximation for the area and hence A, = x*/3. This is a very interesting result because A(x) = x°/3

measures the area under the graph of the function y = x> and we see that the differential of A(x) gives

2

y=Xx"

In summary, to find the area under the parabola y = f(x) between x = a and x = b we divide the
interval into n pieces. These pieces each have width Ax = (b-a)/n and we call the left endpoint of these
subintervals x; = a + iAx. Now we form a rectangle whose height is f(x;) and whose area is f(x;)Ax. If
we sum all the areas of these rectangles, we have;

A, =Y f(x)Ax

Finally, as we consider more and more rectangles, the quantity A, gives a better and better
approximation so that we may write the area as;

A = lim)_f(x;)Ax

This example shares many of the same ideas introduced by Archimedes. It uses the method of
exhaustion with rectangles rather than triangles, the more of these polygons the better, and a
summation of a series of terms. However it also uses the concept of summation to infinity which
Archimedes was unable to use.

There are many differences between Archimedes double reductio ad absurdum proof for the
quadrature of the parabola and the modern calculus proof of the same result that I have outlined above.
The modern calculus proofis effortless to understand and can easily be applied to finding areas of most
segments under curves. Archimedes’ proof is designed, with the formula being easy to use, for a
specific case. However the modern calculus proof of finding the area under a curve was made easier to

™ century had a concept of what calculus was.

write because of the fact that mathematicians in the 17
Archimedes on the hand other may not have even realised that he was close to discovering calculus.
Archimedes’ method of exhaustion may have had flaws, it was not general or rigorous, but

there is no doubt that his work made a very important contribution to the evolution of calculus making

him possibly the greatest mathematician of antiquity.®
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