Name: CHAN CHI HEI

Class: 6LS Class no :1

Title: Double titration
Date of experiment:

Aim

The purpose of this experiment is to find the composition of a sample of sodium carbonate mixture by titration.

Theory

Double indicator titration is used in checking the composition of a mixture of sodium carbonate and sodium hydrogen carbonate. First, no of mol of Na_2CO_3 in mixture can be directly calculated in the data of first titration. For the calculation of no of mol of $NaHCO_3$ need to involve the data from both 1^{st} and 2^{nd} data , because the first titration will give out $NaHCO_3$ also and it will contaminated with the $NaHCO_3$ in the mixture.

Requirements

watch glass
weighing bottle
spatula
sodium carbonate Na₂CO₃
250 cm3 beaker,
wash bottle of distilled water
glass rod
250 cm³ volumetric flask
filter funnel,
dropper

Procedure

- 1. 10.00 g of the sodium carbonate is transferred onto the watch glass and weighted in the nearest 0.01g
- 2. A standard solution is prepared.
- 3. Burette is rinsed with HCL and then filled with the acid. The tip is also be rinsed.
- 4. The initial burette reading is recorded in the 'Trial column'
- 5. 25 cm³ of the sodium carbonate solution is absorbed by the pipette and the pipette is rinsed by the sample solution.
- 6. 25 cm³ of the sodium carbonate solution is transferred to a conical flask
- 7. Water is added to the volumetric flask until it reach to the graduation mark
- 8. 2-3 drops of phenolphthalein indicator solution is added
- 9. Hydrochloric acid is run from the burette into the volumetric flask until the

solution turn from pink to colourless

- 10. Final reading of burette is recorded
- 11. The burette is refilled by HCL, the initial reading of burette is recorded
- 12. 2-3 drops of methyl orange indicator is added
- 13. Hydrochloric acid is added from the burette into the flask until the solution turn from yellow to orange.
- 14. The final reading of burette is recorded
- 15. The steps from 5 to 14 should be repeated 3 times
- 16. The burette and the tip is washed after the experiment.

Results and calculation

Table 1 (Preparation of the Standard solution)

Concentration of the Hydrochloric acid	0.5mol dm ⁻³
Molar Mass of sodium hydrogen carbonate	84 g mol ⁻¹
Molar mass of sodium carbonate	106 g mol ⁻¹
Mass of bottle and contents before transfer, m1	12.05g
Mass of bottle and contents after transfer, m2	2.05 g
Mass of the sample, $m = (m1-m2)$	10.00 g
Volume of solution, V	0.25 dm ⁻³

Table 2(The titration data and results with indicator solutions)

Phenolphthalein	Trial	1 st	2 nd	3 rd
Final Burette Reading(I)/cm ³	30.1	11.0	11.5	12.05
Initial Burette Reading(I)/cm ³	19.2	3.75	4.15	4.70
Volume used(I)/cm ³	10.9	7.25	7.35	7.35
Mean Volume of HCl(aq)				7.28
used(I)/cm ³				
Methyl Orange	Trial	1 st	2 nd	3 rd
Final Burette Reading(II)/cm ³	49.4	34.0	34.2	34.0
Initial Burette Reading(II)/cm ³	30.1	12.5	12.5	12.05
Volume used(II)/cm ³	19.3	21.5	21.7	21.95
Mean Volume of HCl(aq)				21.7
used(II)/cm ³				

First stage of titration

 $Na_2CO_3(aq) + HCl(aq) >> NaHCO_3(aq) + NaCl(aq)$

Since HCL : $Na_2CO_3 = 1:1$

No of mol of Na_2CO_3 = Mean volume 1 of HCL used x Concentration of HCL

$$= 7.28 / 1000 \times 0.5$$

= 3.64 x 10⁻³ mol

Second stage of titration

$$NaHCO3(aq) + HCl(aq) \gg NaCl(aq) + H2O(l) + CO2(g)$$

No of mole of NaHCO₃ = Mean volume 2 of HCL used x Concentration of HCL = $21.7/1000 \times 0.5$ = 0.01085 mol

Calculation

From above, No of mole of Na₂CO₃ in 250 cm³ solution

$$= 3.64 \times 10^{-3} \text{ mol}$$

No of mole of NaHCO₃ in the 250cm³ solution

= (No of mole of NaHCO₃ in second stage) - (No of mole of NaHCO₃ in first stage)

 $= 0.01085 - 3.64 \times 10^{-3}$

 $= 7.21 \times 10^{-3} \text{ mol}$

Mass of $Na_2CO_3 = 0.0364$ x 106 = 3.8584 g

Which is around 3.9 g

Mass of NaHCO₃ = $0.0721 \times 84 = 6.0564 \text{ g}$

Which is around 6.1 g

Therefore the percerage of Na₂CO₃ is 39% and the percentage of NaHCO₃ = 61 %

Discussion

In doing the experiment of titration, several precaution should be taken.

- Wear safety goggles to prevent the splitting of acid onto our body
- take readings at eye level to avoid parallax errors
- The beaker, pipette and the flask should be washed properly with distilled water.
- The flask containing the indicator (phenolphthalein or methyl orange) must be shaken well while acid is added to it.
- · Excess of indicator should not be used.
- To read the buret accurately, hold a white card with a black stripe behind the buret, with the black stripe below the meniscus, and the meniscus itself in front of the white region above the black stripe
- Mix the solution in the titration flask thoroughly after each addition of titrant, to ensure complete reaction before adding more.

Some inaccurate result may due to:

- The molarity of sodium carbonate solution was not accurate
- Calculation errors (e.g. converting mL to L)
- Not rinsing and drying the beaker for the acid
- Over titrating
- Acid or base left on the side of the flask or on the tip of the burette
- · Errors reading volumes.
- Using pipette (10 mL is measured from 0 mL to 10 mL, not from 10 mL to empty)

There are many kinds of titration in chemistry. In the experiment , it is an acid – base titration. First, phenolphthalein is used , it is colorless below around pH 8.5, but turns red above around pH 9.0 , so in step I , when the phenolphthalein turn from pink to colourless , it is nearly to neutral but not exactly neutral because NaHCO $_3$ is slightly alkali.

After that , methyl orange is used because $NaHCO_3$ is a weak base . It changes from red below pH 3.1 to yellow above pH 4.4. Therefore , in the second part of titration, when the indicator turn from yellow to orange, the solution is in acidic but not exactly neutral . Therefore , the result obtained from above is not accurate. If we want to get a more accurate result , ph meter should be used but not indicator.

The calculation above has a little bit complicated. Since Na_2CO_3 only involve in the first titration , no of mol in Na_2CO_3 will exactly equal to the no of mol of HCL used. After that , we need to calculate No of mole of $NaHCO_3$ in the mixture by using the (No of mole of $NaHCO_3$ in second stage) - (No of mole of $NaHCO_3$ in first stage) because the No of mol of $NaHCO_3$ in second stage contain both $NaHCO_3$ from the mixture and that from the first titration. Thus , we need to minus the no of mole of $NaHCO_3$ in first stage to obtain the no of mol of $NaHCO_3$ in the mixture.

References

Data – from Lam Chi Ho (absent on the day of experiment)