Identification Tests

Flame test colours Li, Na, K, Ca, Sr, Ba ions.

Flame test colours

Metal	Colour
lithium	magenta
sodium	yellow
potassium	lilac
calcium	brick red
strontium	blood red
barium	apple green

Gases- chemical test

H₂, O₂, Cl₂, CO₂, SO₂, HCl, NH₃

GASES

(i) **Hydrogen** - \mathbf{H}_2

Burns with a yellow flame - pops in air $2H_2(g) + O_2(g) \longrightarrow 2H_2O(l)$

(ii) $Oxygen - O_2$

Rekindles a glowing splint

(iii) Chlorine - Cl_2

(a) bleaches damp litmus paper

Cl₂ (g) + H₂O (l)
$$\longrightarrow$$
 HCl (aq) + HOCl (aq) (bleach)

(b) bubble through potassium bromide solution colour change: colourless to brown

$$Cl_2(g) + 2KBr (aq) \longrightarrow Br_2 (aq) + 2KCI (aq)$$
colourless brown

(iv) Carbon dioxide - CO₂

Bubble gas through lime water - turns milky
$$CO_2(g) + Ca(OH)_2(aq) \longrightarrow CaCO_3(s) + H_2O(1)$$

(v) Sulphur dioxide - SO₂

- (a) turns damp blue litmus red
- (b) bubble through potassium dichromate(VI) solution: colour change from orange to green.

$$2H^{+}(aq) + 3SO_{2}(g) + Cr_{2}O_{7}^{2-}(aq) \longrightarrow 2Cr^{3+}(aq) + 3SO_{4}^{2-}(aq) + H_{2}O(l)$$
 (green)

(vi) Hydrogen chloride - HCl

- (a) turns damp blue litmus red
- (b) forms white fumes with conc. ammonia

$$HCl(g) + NH_3(g)$$
 \rightarrow $NH_4Cl(s)$ white

(vii) Ammonia - NH₃

- (a) turns damp red litmus blue
- (b) forms white fumes with conc. hydrochloric acid

$$HCl(g) + NH_3(g)$$
 \longrightarrow $NH_4Cl(s)$

Anions

CI, Br and I using Ag+ followed by NH₃ (aq)

CO₃²⁻ and HCO₃ using dilute acid and Mg²⁺ SO₄²⁻ using dilute acid and Ba²⁺

SO₃²- using dilute acid

Chloride Cl, Bromide Br, and Iodide I (a)

To a solution of the ions add a solution of silver nitrate.

	Ag ⁺ (aq)
Chloride	White precipitate insoluble in dilute HNO ₃ . Soluble in dilute NH ₃ (aq)
	Soluble in conc. NH ₃
Bromide	Cream precipitate insoluble in dilute HNO ₃ . Insoluble in dilute NH ₃ (aq). Soluble in conc. NH ₃
Iodide	Yellow precipitate insoluble in dilute HNO ₃ . Insoluble in dilute NH ₃ (aq). Insoluble in conc. NH ₃ .

$$Ag^+(aq) + X^-(aq) \longrightarrow AgX(s)$$

(b) Carbonate, CO₃² and hydrogen carbonate, HCO₃⁻

- (i) Add dilute acid in each case carbon dioxide gas is evolved.
- (ii) To a solution add a few drops of magnesium sulphate solution.

	CO_3^{2-} (aq)	HCO_3 (aq)
	White precipitate of	No precipitate.
N (- 2+()	$MgCO_3$	Mg(HCO ₃) ₂ , is soluble.
$Mg^{2+}(aq)$		On heating it decomposes forming a precipitate of MgCO ₃

(c) <u>Sulphate (V1), SO₄²⁻, and sulphate(IV), (sulphite) SO₃²⁻</u>

(i) Addition of dilute acid

$$Na_2SO_3 + 2 HC1 \longrightarrow 2 NaC1 + SO_2 + H_2O$$

then test for SO_2 .

(ii) To a solution add dilute HCl followed by barium chloride solution.

Sulphate (VI) SO_4^{2-} - white precipitate.

$$Ba^{2+}(aq) + SO_4^{2-}(aq) \longrightarrow BaSO_4(s)$$

Sulphate (IV) SO_3^{2-} - no precipitate.

	SO ₄ ²⁻ (aq)	SO_3^{2-} (aq)
(i) dilute acid	no reaction	effervescence of SO ₂
(ii) dilute HCl + BaCl ₂ (aq)	white precipitate of BaSO ₄	no precipitate.
(iii) BaCl ₂ (aq) + HCl	white precipitate. Insoluble in HCl	white precipitate. Soluble in HCl

(d) Nitrate (V) ion $- NO_3$

Dissolve 2 or 3 small crystals in one quarter of a test tube of sodium hydroxide solution. Add a small quantity of aluminium. Warm the mixture. Ammonia gas is evolved which can be tested in the usual way.

$$5OH^{-} + 18H_{2}O + 3NO_{3}^{-} + 8A1 \longrightarrow 3NH_{3} + 8Al(OH)_{4}^{-}$$

(e) Nitrate (III) ion - NO₂

To a solution add dilute hydrochloric acid. Immediate effervescence of a brown gas NO₂, is observed and a pale blue solution.

$$3NO_2^-(aq) + 2H^+ \longrightarrow 2NO(g) + NO_3^- + H_2O$$

NO₂ gas is formed when NO reacts with air

$$2NO (aq) + O_2 \longrightarrow 2NO_2 (g)$$
 (brown gas)

Cations in aqueous solution

Ag⁺ using halide ions

Cu²⁺, Fe²⁺, Al³⁺, Zn²⁺, Ni²⁺ using NaOH (aq) and NH₃ (aq) Mn²⁺ using NaOH followed by H₂O₂ Fe³⁺ using SCN⁻ Fe²⁺ using [Fe(CN)₆]³⁻

Co²⁺ using conc. HCl

Identification of cations in solution

Silver (Ag⁺) and lead (Pb²⁺) (i)

Similar test to that for halide ions

To a solution of the ions add a solution of sodium halide.

	Chloride	Bromide	Iodide
	White precipitate	Cream precipitate	Yellow
	insoluble in dilute	insoluble in dilute	precipitate
Ag ⁺ (aq)	HNO_3 .	HNO_3 .	insoluble in dilute
	Soluble in dilute NH ₃	Insoluble in dilute NH ₃	HNO_3 .
	(aq)	(aq).	Insoluble in dilute
	Soluble in conc. NH ₃	Soluble in conc. NH ₃	NH_3 (aq).
			Insoluble in conc.
			NH ₃ .
Pb ²⁺ (aq)	White precipitate.	Cream precipitate	Yellow
	Soluble in hot water.		precipitate

$$Ag^{+}(aq) + X^{-}(aq) \xrightarrow{\qquad} AgX(s)$$

$$Pb^{2+}(aq) + 2X^{-}(aq) \xrightarrow{\qquad} PbX_{2}(s)$$
where x is Cl⁻, Br⁻, l⁻.

Cu^{2+} , Fe^{2+} , Al^{3+} , Zn^{2+} , Ni^{2+} (ii)

	Cu ²⁺	Fe ²⁺	Al ³⁺	Zn ²⁺	Ni ²⁺
(a) add	blue ppt.	green ppt.	white ppt.	white ppt.	green ppt.
NaOH(aq)					
(b) add	insoluble	insoluble	soluble	soluble	insoluble
excess					
(c) add NH ₃	blue ppt.	green ppt.	white ppt.	white ppt.	green ppt.
(d) add	dark blue	insoluble	insoluble	colourless	dark blue
excess	solution			soln.	soln.

(a) Formation of insoluble metal hydroxides using NaOH (aq)
$$M^{2+}$$
 (aq) $+$ 2OH $^{-}$ (aq) \longrightarrow M(OH)₂ (s) ppt.

- (b) $Al(OH)_3$ (s) and $Zn(OH)_2$ (s) soluble in excess due to their amphoteric nature.
- (c) Formation of insoluble metal hydroxides using NH_3 $NH_3 + H_2O \longrightarrow NH_4^+ + OH^-$
- (d) $Cu(OH)_2$, $Zn(OH)_2$, $Ni(OH)_2$ are soluble in excess due to the formation of complex ions. $M(OH)_2 + 4NH_3 \longrightarrow [M(NH_3)_4]^{2+} + 2OH^{-1}$

(iii) Manganese (II) - Mn²⁺

Add excess 2M sodium hydroxide to a solution of manganese(II) - a white precipitate is formed

formed
$$Mn^{2+} (aq) + 2OH^{-} (aq) \longrightarrow Mn(OH)_{2} (s)$$
white ppt.

Add 20 vol hydrogen peroxide - a black ppt. of manganese(IV) oxide, MnO₂ is formed and oxygen is evolved.

(iv) Iron (III) - Fe^{3+}

To a solution of Fe³⁺ add a solution of potassium thiocyanate: deep red colour.

$$[Fe(H2O)6]3+ (aq) + SCN (aq) \longrightarrow [Fe(H2O)5SCN]2+ (aq) + H2O (l) blood red soln$$

(v) $\underline{\text{Iron (II)}} - \text{Fe}^{2+}$

To a solution of Fe^{2+} add a solution of potassium hexacyanoferrate (III): dark blue precipitate.

$$Fe^{2+}$$
 (aq) + $[Fe(CN)_6]^{3-}$ (aq) \longrightarrow Fe^{3+} (aq) + $[Fe(CN)_6]^{4-}$ (aq)

followed by

$$K^{+}$$
 (aq) + Fe^{3+} (aq) + $[Fe(CN)_{6}]^{4-}$ (aq) \longrightarrow $KFe^{III}[Fe^{II}(CN)_{6}]$ (s) dark blue ppt.

To a pink solution of cobalt (II) add a few drops of conc. hydrochloric acid. Colour changes from pink to blue.

$$\begin{array}{lll} \left[Co(H_2O)_6\right]^{\ 2^+} (aq) \ + \ 4Cl\ (aq) & \Leftrightarrow \left[CoCl_4\right]^{\ 2^-} (aq) + \ 6H_2O\left(l\right) \\ pink & blue \end{array}$$