Chemistry TAS Report

1. Experiment Number: 10

2. Date: 18/01/2008

3. Title: Determination of the equilibrium constant for the reaction:

$$Fe^{3+}_{(aq)} + SCN_{(aq)} \Leftrightarrow FeSCN_{(aq)}^{2+}$$

4. Aims/Objective:

To determine the equilibrium constant for the reaction:

$$Fe^{3+}_{(aq)} + SCN^{-}_{(aq)} \Leftrightarrow FeSCN^{2+}_{(aq)}$$

5. Introduction / Theory:

In this experiment, the equilibrium constant for the formation of a complex ion, FeSCN²⁺_(aq), is determined.

Complex ions, thiocyanatoiron(III) ions, are formed from iron(III) ions and thiocyanate ions in aqueous solution :

$$Fe^{3+}_{(aq)} + SCN_{(aq)} \Leftrightarrow FeSCN_{(aq)}^{2+}$$
 (1)

The equilibrium constant for this reaction is:

$$K_{c} = \underline{[FeSCN^{2+}_{(aq)}]}$$

$$[Fe^{3+}_{(aq)}][SCN^{-}_{(aq)}]$$
(2)

The product complex ion is the only one of the three species which has an appreciable color (blood-red).

6. Relevant Equations/Chemical Reactions Involved:

$$Fe^{3+}_{(aq)} + SCN_{(aq)} \Leftrightarrow FeSCN_{(aq)}^{2+}$$

7. Chemicals:

8. Apparatus and equipment:

Boiling tube	5	Dropper	2
10 cm ³ measuring cylinder	1	Lamp	1
25 cm ³ measuring cylinder	1	Wash bottle	1
Safety spectacle	1	250 cm ³ beaker	1

9. Procedure:

- 1. $0.2 \text{ M Fe}(NO_3)_{3(aq)}$ was used and 10 cm^3 of 0.08 M, 0.032 M, 0.0128 M, $0.00512 \text{ M Fe}(NO_3)_{3(aq)}$ were prepared respectively.
- 2. The solutions were added by using 10 cm³ measuring cylinder to 5 clean boiling tubes in a rack as below.

Tube No.	1	2	3	4	5
SCN ⁻ (aq) / cm ³	10	10	10	10	10
$\mathrm{Fe^{3+}_{(aq)}/cm^3}$	10(0.2 M)	10(0.08 M)	10(0.032 M)	10(0.0128 M)	10(0.00512 M)

- 3. Tubes 1 and 2 were wrapped around with a strip of paper so that light was excluded from the side.
- 4. The solutions towards the lamp were looked vertically down to compare the colour intensity.
- 5. Some of the solution from the standard tube 1 was removed with a dropper until the colour intensities of solutions in both tubes were the same. And the removed liquid was put into a clean and dry beaker.
- 6. The depth of the solution in tube 1 was then measured.
- 7. Steps 3 to 6 were repeated with tubes 1 and 3, 1 and 4 and finally 1 and 5.

10. Observations:

The colour intensities of the solutions in the two tubes being observed were the same.

11. Data, Calculation and Results:

- Height of solution in original tube 1 = 59 mm
- Height of solution in tube 1 having the same colour intensity as tubes 2, 3, 4 and 5 are :

Same colour intensity as	2	3	4	5
Height of solution in tube 1 (mm)	45	35	28	23

12. Conclusion:

The equilibrium constant for the reaction : $Fe^{3^{+}}_{(aq)} + SCN^{-}_{(aq)} \Leftrightarrow FeSCN^{2^{+}}_{(aq)}$ was found to be 82.1 M⁻¹.

13. Discussion:

1. By $M_1V_1 = M_2V_2$,

For tube 1, initial concentration of SCN $^{-}$ (aq) = 0.001 M initial concentration of Fe $^{3+}$ (aq) = 0.1 M

- For tube 2, initial concentration of SCN $_{(aq)} = 0.001 \text{ M}$ initial concentration of Fe $_{(aq)}^{3+} = 0.04 \text{ M}$
- For tube 3, initial concentration of SCN $_{(aq)}^{-}$ = 0.001 M initial concentration of Fe $_{(aq)}^{3+}$ = 0.016 M
- For tube 4, initial concentration of SCN $_{(aq)}^-$ = 0.001 M initial concentration of Fe $_{(aq)}^{3+}$ = 0.0064 M
- For tube 5, initial concentration of SCN $^{-}_{(aq)} = 0.001$ M initial concentration of Fe $^{3+}_{(aq)} = 0.00256$ M
- 2. Concentration of $FeSCN^{2+}$ in tube 1 = 0.001 M
- 3. Ratio of depth in the colour comparison with tube 2
 - =45/59
 - = 0.763

Ratio of depth in the colour comparison with tube 3

- = 35/59
- = 0.593

Ratio of depth in the colour comparison with tube 4

- = 28/59
- = 0.475

Ratio of depth in the colour comparison with tube 5

- = 23 / 59
- = 0.390

Equilibrium concentration of thiocyanoiron(III) ions:

In tube
$$2 = 0.001 \times (45 / 59) = 7.63 \times 10^{-4} M$$

In tube
$$3 = 0.001 \text{ x} (35 / 59) = 5.93 \text{ x} 10^{-4} \text{ M}$$

In tube
$$4 = 0.001 \text{ x} (28 / 59) = 4.75 \text{ x} 10^{-4} \text{ M}$$

In tube
$$5 = 0.001 \text{ x} (23 / 59) = 3.90 \text{ x} 10^{-4} \text{ M}$$

4.
$$[Fe^{3+}]_{equil} = [Fe^{3+}]_{initial} - [FeSCN^{2+}]_{equil}$$

= 0.04 - 7.63 x 10⁻⁴
= 0.0392 M

[SCN⁻]_{equil} = [SCN⁻]_{initial} - [FeSCN²⁺]_{equil}
=
$$0.001 - 7.63 \times 10^{-4}$$

= $2.37 \times 10^{-4} M$

5. Room temperature = $16 \, ^{\circ}$ C

$$\begin{split} K &= [FeSCN^{2+}]_{equil} / ([Fe^{3+}]_{equil}[SCN^{-}]_{equil}) \\ &= 7.63 \times 10^{-4} / [(0.0392)(2.37 \times 10^{-4})] \\ &= 82.1 \text{ M}^{-1} \end{split}$$

- 6. There are few sources of error in this experiment.
 - (1) Determination of colour intensity in the two tubes observed might

not be accurate.

(2) Taking reading when measuring the depth of liquid.

Error estimation -

When taking initial reading, error is ± 0.05 cm³.

When taking final reading, error is also ± 0.05 cm³.

Therefore, error is ± 0.1 cm³.